Reaktor
Volume 12, Nomor 4, Desember 2009

ULTRAFILTRATION AS PRETREATMENT OF REVERSE OSMOSIS: LOW FOULING ULTRAFILTRATION MEMBRANE PREPARED FROM POLYETHERSULFONE–AMPHIPHILIC BLOCK COPOLYMER BLEND

Heru Susanto (Department of Chemical Engineering, Universitas Diponegoro, Semarang, Indonesia Jl. Prof. Soedarto, SH, Tembalang, Semarang, Tel./Fax.: 62-24-7460058)
Luqman Buchori (Department of Chemical Engineering, Universitas Diponegoro, Semarang, Indonesia Jl. Prof. Soedarto, SH, Tembalang, Semarang, Tel./Fax.: 62-24-7460058)
Siswo Sumardiono (Department of Chemical Engineering, Universitas Diponegoro, Semarang, Indonesia Jl. Prof. Soedarto, SH, Tembalang, Semarang, Tel./Fax.: 62-24-7460058)
Berkah Fajar (Department of Mechanical Engineering, Universitas Diponegoro, Semarang, Indonesia Jl. Prof. Soedarto, SH, Tembalang, Semarang, Tel./Fax.: 62-24-7460058)
Titik Istirokhatun (Department of Chemical Engineering, Universitas Diponegoro, Semarang, Indonesia Jl. Prof. Soedarto, SH, Tembalang, Semarang, Tel./Fax.: 62-24-7460058)
I Nyoman Widiasa (Department of Chemical Engineering, Universitas Diponegoro, Semarang, Indonesia Jl. Prof. Soedarto, SH, Tembalang, Semarang, Tel./Fax.: 62-24-7460058)



Article Info

Publish Date
17 Nov 2009

Abstract

This paper demonstrates the preparation of polyethersulfone (PES) ultrafiltration (UF) membranes via wet phase inversion method using either poly(ethylene oxide)-b-poly(propylene oxide)-b- poly(ethylene oxide) (Pluronic®, Plu) or polyethylene glycol (PEG) as hydrophilic modifier. Their effects on membrane structure as well as the resulting membrane performance and their stability in membrane polymer matrix were systematically investigated. The investigated membrane characteristics include surface hydrophilicity (by contact angle), surface chemistry (by FTIR spectroscopy) and water flux measurement. Visualization of membrane surface and cross section morphology was also done by scanning electron microscopy. The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of bovine serum albumin as the model system. The stability of additive was examined by incubating the membrane in water (40oC) for up to 10 days. The results show that modification effects on membrane characteristic and low fouling behavior were clearly observed. Further, amphiphilic Pluronic generally showed better performance than PEG.   

Copyrights © 2009






Journal Info

Abbrev

reaktor

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Control & Systems Engineering Energy Materials Science & Nanotechnology

Description

Reaktor invites contributions of original and novel fundamental research. Reaktor publishes scientific study/ research papers, industrial problem solving related to Chemical Engineering field as well as review papers. The journal presents paper dealing with the topic related to Chemical Engineering ...