Bulletin of Electrical Engineering and Informatics
Vol 9, No 4: August 2020

Machinery signal separation using non-negative matrix factorization with real mixing

Anindita Adikaputri Vinaya (Universitas Internasional Semen Indonesia)
Sefri Yulianto (Universitas Internasional Semen Indonesia)
Qurrotin A’yunina Maulida Okta Arifianti (Universitas Internasional Semen Indonesia)
Dhany Arifianto (Institut Teknologi Sepuluh Nopember)
Aulia Siti Aisjah (Institut Teknologi Sepuluh Nopember)



Article Info

Publish Date
01 Aug 2020

Abstract

A big challenge in detecting damage occurs when the sound of a machine mixes with the sound of another machine. This paper proposes the separation of mixed acoustic signals using Non-negative Matrix Factorization (NMF) method for fault diagnosis. The NMF method is an effective solution for finding hidden parameters when the number of observations obtained by the sensor is less than the number of sources. The real mixing process is done by placing two microphones in front of the machine. Two microphones will be used as sensors to capture a mixture of four machinery signals. Performance testing of signal separation is done by comparing baseline signals with estimated signals through the mean log spectral distance (LSD) and the mean square error (MSE). The smallest spectral distance between the estimated signal and the baseline signal is found in Ŝ2 with an average LSD of 1.26. The estimated signal Ŝ2 is the closest to the baseline signal with MSE of 1.15 x 10-2. The pattern of bearing damage in the male screw compressor can be identified from the spectrum of estimated signal through harmonic frequencies as in the estimated signal Ŝ3 which is seen at 11x fundamental frequency, 12x fundamental frequency, 15x fundamental frequency, and 16x fundamental frequency. 

Copyrights © 2020






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...