cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Bulletin of Electrical Engineering and Informatics
ISSN : -     EISSN : -     DOI : -
Core Subject : Engineering,
Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering.
Arjuna Subject : -
Articles 2,010 Documents
Evaluating IoT based passive water catchment monitoring system data acquisition and analysis Muhammad Aznil Ab Aziz; M. F. Abas; Mohamad Khairul Anwar Abu Bashri; N. Md. Saad; M. H. Ariff
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (815.5 KB) | DOI: 10.11591/eei.v8i4.1583

Abstract

Water quality is the main aspect to determine the quality of aquatic systems. Poor water quality will pose a health risk for people and ecosystems. The old methods such as collecting samples of water manually and testing and analysing at lab will cause the time consuming, wastage of man power and not economical. A system is needed to provide a real-time data for environmental protection and tracking pollution sources. This paper aims to describe on how to monitor water quality continuously through IoT platform. Water Quality Catchment Monitoring System was introduced to check and monitor water quality continuously. It’s features five sensors which are temperature sensor, light intensity sensor, pH sensor, GPS tracker and Inertia Movement Unit (IMU). IMU is a new feature in the system where the direction of x and y is determined for planning and find out where a water quality problem exists by determining the flow of water. The system uses an internet wireless connection using the ESP8266 Wi-Fi Shield Module as a connection between Arduino Mega2560 and laptop. ThingSpeak application acts as an IoT platform used for real-time data monitoring.
Adaptive Mobile E-Learning Environment for Improving Educational Process Ahmed A. Saleh; Hazem M. El-Bakry
Bulletin of Electrical Engineering and Informatics Vol 2, No 2: June 2013
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (751.146 KB) | DOI: 10.11591/eei.v2i2.217

Abstract

Over the last decade, the concept of e-learning has become an important topic. E-Learning today gives the student a central role in his/her own learning process. It allows students to try things out, participate in courses, tests and simulations like never before, and get more out of learning than before. On the other hand, mobile E-learning has many advantages that contribute in enhancing and facilitating the learning process. In this paper, an adaptive mobile E-Learning (AME-Learning) environment for logic gates, simplification of Boolean functions and related fields is presented. The presented model generates suitable courses for each student in a dynamic form. The proposed environment is designed by integrating visual basic, flash and other effective tools. The contributions of this paper are supporting AME-Learning environment to improve learning and an evaluation of its use in context. 
A novel miniature coplanar band-pass filter for ISM applications Badr Nasiri; Abdelhadi Ennajih; Ahmed Errkik; Jamal Zbitou; Mounir Derri
Bulletin of Electrical Engineering and Informatics Vol 9, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (646.124 KB) | DOI: 10.11591/eei.v9i1.1340

Abstract

This paper presents a novel approach to design a compact miniature coplanar band-pass filter by using rectangular split ring resonator. This proposed circuit is designed for the Industrial, Scientific and, Medical (ISM) frequency band applications at 2.4 GHz. At the first stage, a metamaterial resonator is designed and simulated in a TEM waveguide to verifiy its electromagnetic proprieties around the desired frequency bands. At the second stage, a band pass filter is designed using the proposed metamaterial resonator. Many parametric studies are realized to investigate the effect and influence of some resonator parameters on the proposed BPF performances. ADS Agilent and CST-MWS solvers are used in order to verify the simulated results. The circuit frequency responses show an excellent insertion loss and good return loss in the passband.
Wideband power amplifier based on Wilkinson power divider for s-band satellite communications Mabrok, Mussa; Zakaria, Zahriladha; Sutikno, Tole; Alhegazi, Ammar
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (631.684 KB) | DOI: 10.11591/eei.v8i4.1552

Abstract

This paper presents design and simulation of wideband power amplifier based on multi-section Wilkinson power divider. Class-A topology and ATF-511P8 transistor have been used. Advanced Design System (ADS) software used to simulate the designed power amplifier. The simulation results show an input return loss (S11)<-10dB, gain (S21)>10 dB over the entire bandwidth, and an output power around 28dBm at the Centre frequency of 3GHz. The designed amplifier is stable over the entire bandwidth (K>1). Inter-modulation distortion is -65.187dBc which is less than -50dBc. The designed amplifier can be used for the microwave applications which include weather radar, satellite communication, wireless networking, mobile, and TV.
Peak load scheduling in smart grid using cloud computing Manoj Hans; Vivekkant Jogi
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (467.638 KB) | DOI: 10.11591/eei.v8i4.1687

Abstract

In this paper present peak, energy management attainable is feasible by monitoring real-time readings of whole loads within the college premises victimization this schedule loads so energy saving is possible. Currently, cloud computing technology offer on-line real-time monitoring knowledge, we have a tendency to create project supported cloud computing application for energy management that is employed for monitoring real time consumption of electricity and load planning. With respect to monitoring knowledge, we have a tendency to be able to plot the load curves so it'll be useful in achieving optimum energy consumption for educational institute.
Direct space vector modulation for matrix converter fed dual star induction machine and neuro-fuzzy speed controller Meliani Bouziane; Meroufel Abdelkader
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (894.088 KB) | DOI: 10.11591/eei.v8i3.1560

Abstract

This paper presents the modeling, design, and simulation of an adaptive neuro fuzzy inference strategy (ANFIS) for controlling the speed of the Double Star induction Machine (DSIM), the machine is fed by three phase direct matrix converter which makes directly AC-AC power conversion is modeled using Direct Space Vector Modulation technique(DSVM)  for direct matrix converter. Double star Induction motor is characterized by highly non-linear, complex and time-varying dynamics and inaccessibility of some of the states and outputs for measurements. Hence it can be considered as a challenging engineering problem in the industrial sector. Various advanced control techniques has been devised by various researchers across the world. Some of them are based on the neuro-fuzzy techniques. The main advantage of designing the ANFIS coordination scheme is to control the speed of the DSIM to increase the dynamic performance, to provide good stabilization. To show the effectiveness of our scheme, the proposed method was simulated on an electrical system composed of a 4.5 kW six-phase induction machine and its power inverter. Digital simulation results demonstrate that the deigned ANFIS speed controller realize a good dynamic of the DSIM, a perfect speed tracking with no overshoot, give better performance and high robustness.
Study and comparison results of the field oriented control for photovoltaic water pumping system applied on two cities in Morocco Mustapha Errouha; Aziz Derouich
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (617.447 KB) | DOI: 10.11591/eei.v8i4.1301

Abstract

In this papier, a low-cost solar photovoltaic water pumping system based on an induction motor without the use of chemical energy storage is presented. In literature, we can find several Maximum Power Point Tracking Algorithms, the choice of the algorithm is according to the nature of application. In this article, Variable Step Size Incremental Conductance MPPT method has been developed since it is fast and has less oscillations. The studied photovoltaic pumping system contains a centrifugal pump which is driven by a three-phase asynchronous motor. To control the water flow, the field-oriented control has been implemented. The control system is applied on two cities with different climatic conditions to evaluate their performance. The photovoltaic pumping system is developed using the MATLAB/Simulink software to discuss the results obtained. Consequently, the proposed MPPT based on the incremental conductance variable step shows good performances in terms of efficiency and tracking speed.
Solar PV parameter estimation using multi-objective optimisation Nikita Rawat; Padmanabh Thakur; Utkarsh Jadli
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (431.637 KB) | DOI: 10.11591/eei.v8i4.1312

Abstract

The estimation of the electrical model parameters of solar PV, such as light-induced current, diode dark saturation current, thermal voltage, series resistance, and shunt resistance, is indispensable to predict the actual electrical performance of solar photovoltaic (PV) under changing environmental conditions. Therefore, this paper first considers the various methods of parameter estimation of solar PV to highlight their shortfalls. Thereafter, a new parameter estimation method, based on multi-objective optimisation, namely, Non-dominated Sorting Genetic Algorithm-II (NSGA-II), is proposed. Furthermore, to check the effectiveness and accuracy of the proposed method, conventional methods, such as, ‘Newton-Raphson’, ‘Particle Swarm Optimisation, Search Algorithm, was tested on four solar PV modules of polycrystalline and monocrystalline materials. Finally, a solar PV module photowatt PWP201 has been considered and compared with six different state of art methods. The estimated performance indices such as current absolute error matrics, absolute relative power error, mean absolute error, and P-V characteristics curve were compared. The results depict the close proximity of the characteristic curve obtained with the proposed NSGA-II method to the curve obtained by the manufacturer’s datasheet.
Magnetic resonance coupling for 5G WPT applications Saidatul Izyanie Kamarudin; A. Ismail; A. Sali; M. Y. Ahmad
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (710.252 KB) | DOI: 10.11591/eei.v8i3.1582

Abstract

Inductive Wireless Power Transfer (IWPT) is the most popular and common technology for the resonance coupling power transfer. However, in 2007 it has experimentally demonstrated by a research group from Massachusets Institute of Technology (MIT) that WPT can be improved by using Magnetic Resonance Coupling Wireless Power Transfer (MRC WPT) in terms of the coupling distance and efficiency. Furthermore, by exploiting the unused, high-frequency mm-wave band which are ranging from 3~300 GHz frequency band, the next 5G generations of wireless networks will be able to support a higher number of devices with the increasing data rate, higher energy efficiency and also compatible with the previous technology. In this work, a square planar inductor with the dimension of 6.1 x 6.1 mm is designed, and the resonators have the same self-resonance frequency at 14 GHz. The coil resonators have been laid on Silicon and Oxide substrate to reduce the loss in the design. From the CST software simulation and the analytical model in MATLAB software, it has been shown that the MRC WPT design has improved the performance of IWPT design by 40% power transfer efficiency. MRC WPT design also has larger H-Field value which is 705.5 A/m, as compared to the IWPT design which has only 285.6 A/m when both Transmitter(Tx) and Reciever(RX) is at 0.3 mm coupling distance.
Solar irradiance uncertainty management based on Monte Carlo-beta probability density function: case in Malaysian tropical climate N. Md. Saad; M. Z. Sujod; M. I. M. Ridzuan; M. F. Abas; M. S. Jadin; M. S. Bakar; A. Z. Ahmad
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1812.039 KB) | DOI: 10.11591/eei.v8i3.1581

Abstract

In recent years, solar PV power generation has seen a rapid growth due to environmental benefits and zero fuel costs. In Malaysia, due to its location near the equator, makes solar energy the most utilized renewable energy resources. Unlike conventional power generation, solar energy is considered as uncertain generation sources which will cause unstable energy supplied. The uncertainty of solar resource needs to be managed for the planning of the PV system to produce its maximum power. The statistical method is the most prominent to manage and model the solar irradiance uncertainty patterns. Based on one-minute time interval meteorological data taken in Pekan, Pahang, West Malaysia, the Monte Carlo-Beta probability density function (Beta PDF) is performed to model continuous random variable of solar irradiance. The uncertainty studies are needed to optimally plan the photovoltaic system for the development of solar PV technologies in generating electricity and enhance the utilization of renewable energy; especially in tropical climate region.

Page 1 of 201 | Total Record : 2010


Filter by Year

2012 2023


Filter By Issues
All Issue Vol 12, No 6: December 2023 Vol 12, No 5: October 2023 Vol 12, No 4: August 2023 Vol 12, No 3: June 2023 Vol 12, No 2: April 2023 Vol 12, No 1: February 2023 Vol 11, No 6: December 2022 Vol 11, No 5: October 2022 Vol 11, No 4: August 2022 Vol 11, No 3: June 2022 Vol 11, No 2: April 2022 Vol 11, No 1: February 2022 Vol 10, No 6: December 2021 Vol 10, No 5: October 2021 Vol 10, No 4: August 2021 Vol 10, No 3: June 2021 Vol 10, No 2: April 2021 Vol 10, No 1: February 2021 Vol 9, No 6: December 2020 Vol 9, No 5: October 2020 Vol 9, No 4: August 2020 Vol 9, No 3: June 2020 Vol 9, No 2: April 2020 Vol 9, No 1: February 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 List of Accepted Papers (with minor revisions) More Issue