Scientific Contribution Oil and Gas
Vol 34, No 1 (2011)

Oxidation Stability Improvement For Jatropha Biodiesel To Meet The International Standard For Automotive Applications

Fajar, Rizqon (Unknown)
Wibowo, Cahyo Setyo (Unknown)
Yubaidah, Siti (Unknown)



Article Info

Publish Date
15 Feb 2022

Abstract

Biodiesel from Jatropha oil has several advantages compared to which from Palm oil, among others better cold flow properties (lower cloud point, pour point and CFPP). However, Jatropha biodiesel has an oxidation stability that is too low (2-3 hours) so that its application in the diesel engine is not acceptable. This paper reports the effect of addition of Palm bodiesel and commercial anti-oxidant on the oxidation stability of Jatropha biodiesel. The objective of this research is to find the formulation for Jatropha biodiesel which will meet the oxidation stability determined by World Wide Fuel Charter 2009 (WWFC) of min.10 hours. The required addition of BHT into Jatropha biodiesel is more than 10000 ppm to meet the WWFC specification. The addition of BHT will decrease to less than 10000 ppm if the Jatropha biodiesel was blended with Palm biodiesel as much as 60% v/v. Addition of antioxidant should be limited to a minimum value because there are also concerns about the negative effects of antioxidants on the engine components

Copyrights © 2011






Journal Info

Abbrev

SCOG

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Earth & Planetary Sciences Energy Environmental Science

Description

research activities, technology engineering development and laboratory in the oil and gas field including regional geology/basin modeling, petroleum geology, sedimentology, stratigraphy, petroleum geoscience, drilling and completion technology, production engineering, well simulation, formation ...