Claim Missing Document
Check
Articles

Found 12 Documents
Search

OPTIMASI KINERJA SISTEM PERALATAN KONVERSI LGV MIX DME PADA KENDARAAN BERMOTOR RODA EMPAT ( The Performance Optimization of DME Fuel with Dual Fuel System in Diesel Engine Vehicles) Sukaraharja, Reza; Wibowo, Cahyo Setyo; Anggarani, Riesta; Aisyah, Lies
Lembaran publikasi minyak dan gas bumi Vol 50, No 3 (2016)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1403.974 KB) | DOI: 10.29017/LPMGB.50.3.6

Abstract

Kegiatan penelitian pemanfaatan DME (Dimethyl Ether) sebagai bahan bakar kendaraan merupakan kegiatan lanjutan dari tahun sebelumnya yang dicampurkan (mix) dengan bahan bakar LGV. Penggunaan peralatan konversi LGV yang digunakan sebagai alat konversi dan umum dipergunakan sebagai alat konversi bahan bakar gas untuk kendaraan masih menghasilkan unjuk kerja yang belum optimal khususnya apabila digunakan sebagai alat konversi untuk bahan bakar DME. Perancangan peralatan konversi DME mix LGV yang sesuai dengan kebutuhan jenis dan tipe mesin tentu akan menghasilkan unjuk kerja yang optimum seperti yang telah dilakukan pada kegiatan 2014. Demikian juga dengan penempatan peralatan konversi DME yang compact akan memberikan kinerja yang sebaik menggunakan bahan bakar bensin serta kenyaman bagi pengemudi. Pengujian melalui serangkaian setting peralatan konversi diharapkan mendapatkan hasil kinerja yang optimum hingga setara dengan menggunakan bahan bakar bensin serta menghasilkan emisi gas buang yang lebih bersih.Activity research of DME (Dimethyl Ether) utilization as vehicle fuel is a continuation activity from previous year. LGV conversion equipment is generally used as a gas fuel conversion equipment for vehicles, but still produces a less optimal performance when used as a conversion tool for DME fuels. DME mix LGV conversion equipment design that suits your needs and types of machines certainly, is expected to produce optimum performance as it has done on the 2014 activities. Likewise, the placement of a compact DME conversion apparatus will provide the best performance like using gasoline fuel and comfort for the driver. Testing through a set of conversion equipment settings is expected to achieve optimum performance results up to the equivalent of using gasoline and producing cleaner exhaust emissions.
PENGARUH KONDISI PENYIMPANAN TERHADAP STABILITAS OKSIDASI BAHAN BAKAR JENIS BIODIESEL (B-100), BIOSOLAR (B-20) DAN MINYAK SOLAR MURNI (B-0) ( Effect of Storage Conditions on Oxidation Stability of Biodiesel (B-100), Biosolar (B-20) and Diesel Fuel (B-0) ) Wibowo, Cahyo Setyo; Anggarani, Riesta; Hermawan, Nanang; Aisyah, Lies
Lembaran publikasi minyak dan gas bumi Vol 50, No 3 (2016)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (948.606 KB) | DOI: 10.29017/LPMGB.50.3.8

Abstract

Penggunaan campuran biodiesel dalam minyak solar sebesar minimal 20% (B-20) di sektor transportasi telah ditetapkan menjadi kebijakan mandatori atau wajib oleh Pemerintah. Untuk menjamin kepuasan masyarakat terhadap kualitas B-20, maka kualitas biodiesel (B-100) yang digunakan harus memenuhi standar yang ditetapkan. Pada pelaksanaan di lapangan, distribusi biodiesel dari produsen biodiesel sampai titik pencampuran dengan minyak solar menjadi salah satu titik penting dalam menjamin kualitas biodiesel. Selain itu, setelah dicampurkan menjadi B-20, kualitasnya juga harus diperhatikan. Beberapa hal yang berpengaruh terhadap kualitas B-100 dan B-20 selama penyimpanan adalah: waktu penyimpanan dan kondisi penyimpanan. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh kondisi penyimpanan terhadap parameter kritikal yang terkait dengan aspek kestabilan B-100, B-20 dan B-0 selama periode penyimpanan tertentu (3 bulan).Kondisi penyimpanan yang disimulasikan dalam penelitian ini adalah penyimpanan dalam tangki berbahan stainless steel seperti yang umum digunakan pada tangki penyimpanan bahan bakar. Variasi kondisi penyimpanan adalah: (1) penyimpanan luar ruangan pada temperatur lingkungan (ambien), (2) tangki timbun, (3) penyimpanan dalam ruangan pada temperatur lingkungan (ambien), (4) dalam ruangan pada temperatur 43oC dan (5) dalam ruangan pada temperatur 10oC. Parameter kritikal yang diamati adalah angka asam, viskositas kinematik dan stabilitas oksidasi metode Rancimat yang diukur setiap 1 minggu. Hasil yang diperoleh menunjukkan bahwa dalam periode 3 bulan diperoleh stabilitas oksidasi yang stabil untuk sampel B-0 dan B-20, sedangkan sampel B-100 mengalami penurunan stabilitas oksidasi terutama pada penyimpanan temperatur tinggi. Hasil angka asam dan viskositas kinematik menunjukkan kecenderungan yang sama, yaitu terjadi kenaikan dimana kenaikan terbesar disebabkan kondisi penyimpanan temperatur tinggi.Start in January 2016, the Government of Indonesia implemented the mandatory policy of the blending biodiesel in diesel fuel for transportation sector with minimum percentage of 20% (B-20). On ensuring the people satisfaction of B-20 quality, it is necessary to guarantee the quality of biodiesel (B-100) on fulfilling the quality standard. In practice term, biodiesel distribution from the manufacturer to blending facilities becomes important point on keeping the quality of biodiesel. Another point is keeping the quality of the blended fuel B-20. Between other things, these are 2 things most affect biodiesel quality; storage period and storage condition. This research aimed to identify the effect of storage condition on critical parameters related to stability aspects of B-100, B-20 and B-0 in 3 months storage period. The tank being used for all conditions were made from stainless steel. The simulation done in the research were: (1) Outdoor storage on ambient temperature, (2) piled tank, (3) indoor storage on ambient temperature, (4) indoor storage on temperature 43oC, and (5) indoor storage on temperature 10oC. Critical parameters being observed were oxidation stability with Rancimat method, acid value, and kinematic viscosity which all checked once per week. The results shows that in 3 months storage period the samples of B-0 and B-20 are stable, while for B-100 suffered the decreasing of oxidation stability, especially in high temperature storage. The similar effects observed for both acid value and kinematic viscosity, where these 2 parameters increased during 3 months period with the highest caused by high temperature storage.
THE INFLUENCE OF BIODIESEL BLENDS (UP TO B-20) FOR PARTS OF DIESEL ENGINE FUEL SYSTEM BY IMMERSION TEST Anggarani, Riesta; Wibowo, Cahyo Setyo; Yuliarita, Emy
Scientific Contributions Oil and Gas Vol 38, No 1 (2015)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (261.332 KB) | DOI: 10.29017/SCOG.38.1.538

Abstract

The Government of Indonesia will implement the mandatory policy on the use of Diesel Fuel and Biodiesel mixture with minimum 20% volume of biodiesel (B-20) start from 2016. From technical point of view, compatibility issue becomes one of the problems to be considered by automotive industries. The concern relate with solvent characteristic of biodiesel, which cause the biodiesel and its blends react with the parts of fuel system, especially the elastomers. This work is aimed to identify the material constructed the fuel system parts, including metal and non-metal parts, which has good compatibility to biodiesel blends up to B-20. Identifi cation of the parts material was done by FTIR and DSC for non-metal parts and by XRD and XRF for metal parts. The immersion test is used to compare the effect of fi ve biodiesel-diesel fuel blends (B-0, B-5, B-10, B-15, and B-20) to the physical change of metal and non-metal parts of diesel fuel system in a 2500 hours test period. The physical change being checked is the weight of the parts. The result obtained that for immersed metal parts, the change of weight occurred in the range of 0.007% to 0.595%. The higher weight change obtained by non-metal parts in the range of 0.001% to 13.85%. The lowest change was shown by metal parts consists of an alloy of CuO, Al2O3 and SiO, whether for non-metal parts was shown by a polymer type of Fluoroviton A. Through FTIR analysis we also observed that fuels composition before and after immersed with the tested parts were not change signifi cantly means that effect of solvent characteristic of biodiesel in the fuel mixture is negligible.
PEMANFAATAN BAHAN BAKAR DME DENGAN DUAL FUEL SYSTEM PADA MESIN DIESEL KENDARAAN (The Utilization of DME Fuel With Dual Fuel System in Diesel Engine Vehicles) Rulianto, Dimitri; Maymuchar, Maymuchar; Wibowo, Cahyo Setyo
Lembaran publikasi minyak dan gas bumi Vol 50, No 3 (2016)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (783.645 KB) | DOI: 10.29017/LPMGB.50.3.5

Abstract

Dimethylether (DME) merupakan sumber energy alternative yang memiliki karakteristik fisikakimia setara dengan LPG, dengan rumus kimia yang sederhana (CH3-O-CH3). DME dapat dihasilkan dari beragam jenis bahan baku, seperti gas alam, batubara, heavy oil, dan biomassa. Aplikasi DME dapat digunakan di beberapa sektor, antara lain: sektor transportasi, domestik/rumahtangga, power generation, namun apabila digunakan sebagai bahan bakar yang akan mensubstitusikan bahan bakar solar, maka diperlukan modifikasi pada sistim saluran bahan bakarnya. Tujuan dari penelitian ini adalah untuk mendapatkan kinerja optimal dalam rangka pemanfaatan DME sebagai bahan bakar substitusi minyak solar dengan mengaplikasikan dual fuel system pada mesin diesel. Hasil penelitian ini menunjukan bahwa penggunaan bahan bakar DME pada jenis mesin diesel kendaraan dengan dual fuel system dapat digunakan secara langsung jika dilakukan modifikasi pada sistem saluran bahan bakarnya. Perbandingan optimum minyak solar dan bahan bakar DME rata-rata 80%-20% mampu menghasilkan torsi dan daya setara dengan mesin diesel yang menggunakan minyak solar 100%. Pemanfaatan DME sebagai bahan bakar mesin diesel dapat mengurangi emisi opasitas rata-rata sebesar 10%-20%, sehingga meningkatkan kebersihan lingkungan.Dimethylether (DME) is an alternative energy source that has the physicochemical characteristics similar to LPG, with a simple chemical formula (CH3-O-CH3). DME can be produced from a variety of raw materials, such as natural gas, coal, heavy oil, and biomass. DME application can be used in several sectors, such as transport, domestic / household, power generation, but when used as a fuel that will substitute for diesel fuel, would require modifications to the fuel line system.The purpose of this study is to obtain optimum performance on the utilization of DME as a fuel substitution for diesel oil by applying dual fuel system in a diesel engine. This study shows that the use of DME fuel on the type of diesel engine vehicles with dual fuel system directly applicable since the fuel line system has been modified properly. The system which has average optimum comparison between diesel oil and DME up to approximately 80%-20% are capable to generate power and torque which equivalent to a diesel engine using diesel oil 100%. The use of DME as a fuel for diesel engines can reduce emissions of opacity to approx. 10%-20%, as a result the quality of environmental increases.
INFRASTRUKTUR BAHAN BAKAR DME DI INDONESIA (Infrastructure of DME Fuel in Indonesia) Sukaraharja, Reza; Yulianto, Dimitri; Wibowo, Cahyo Setyo; Aisyah, Lies
Lembaran publikasi minyak dan gas bumi Vol 51, No 2 (2017)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (572.535 KB) | DOI: 10.29017/LPMGB.51.2.21

Abstract

Pemanfaatan DME sebagai bahan bakar di Indonesia perlu medapat perhatian khusus dikarenakan bahan bakar DME dapat diperoleh dan diproduksikan dari batubara maupun biomassa yang merupakan sumber energi baru terbarukan. Dengan demikian diperlukan kajian yang menyeluruh terutama untuk membuat suatu Infrastruktur bahan bakar DME yang diperuntukan bagi bagi semua sektor, yaitu Transportasi, Industri dan Rumahtangga. Kegiatan pemanfaatan DME sebagai bahan bakar untuk kendaraan merupakan rangkaian kegiatan dari penelitian pemanfaatan DME sebagai bahan bakar pada kendaraan dan Kajian DME sebagai bahan bakar sektor transportasi, industri dan rumahtangga yang lebih memfokuskan pada pembentukan infrastruktur bahan bakar DME, merupakan kegiatan untuk mendukung Kebijakan Pemerintah demi terciptanya ketahanan Energi Nasional.Utilization of DME as a fuel in Indonesia needs special attention because DME fuel can be obtained and produced from coal and biomass which is renewable energy sources. Therefore a comprehensive study is needed to develop a DME fuel infrastructure which is intended for all sectors, such as Transportation, Industry and Household. DME utilization as a fuel for vehicles is a series of research of DME utilization as fuel of transportation sector, industry and household which focus on DME fuel infrastructure development as an activity to support Government Policy for National Energy Security.
Kebutuhan Angka Oktana Kendaraan Bermotor Mesin Bensin di Indonesia Wibowo, Cahyo Setyo; Aisyah, Lies; Widhiarto, Hery; Riyono, Sugeng
Lembaran publikasi minyak dan gas bumi Vol 49, No 1 (2015)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (474.061 KB) | DOI: 10.29017/LPMGB.49.1.234

Abstract

Pesatnya perkembangan teknologi mesin pada kendaraan bermotor jenis mesin bensin saat ini, menyebabkan meningkatnya kebutuhan angka oktana bahan bakar jenis bensin sesuai dengan kinerja mesinnya. Studi mengenai penentuan nilai angka oktana bahan bakar jenis bensin sangat penting dilakukan karena setiap negara perlu menetapkan tingkat angka oktana bensin yang disuplai ke pasar. Studi ini sangat bermanfaat untuk pemerintah sebagai penentu kebijakan (terutama dalam menentukan kebijakan pengaturan bahan bakar minyak bersubsidi), produsen pabrikan kendaraan dan konsumen. Metodologi yang digunakan pada studi ini antara lain dengan melakukan survey mengenai populasi jenis kendaraan bermotor jenis mesin bensin di Indonesia, kemampuan produksi kilang Pertamina yang berkaitan dengan angka oktana pada bensin dan perkembangan teknologi mesin kendaraan bermotor. Kemudian, diformulasikan dalam bentuk matriks rencana penentuan kebutuhan angka oktana kendaraan bermotor di Indonesia. Hasil yang diperoleh menunjukkan bahwa persentase populasi kendaraan tipe sedan dan kendaraan roda empat dengan penggerak dua roda (tipe 4X2) sebanyak 70%, yang memiliki tingkat rasio kompresi tinggi (di atas 9:1) sehingga membutuhkan bahan bakar dengan angka oktana di atas RON 90. Sedangkan saat ini, kapasitas produksi kilang Pertamina per tahun untuk Bensin RON 92 sekitar 10,91% sehingga diperlukan peningkatan kapasitas produksi kilang. Selain itu, berdasarkan hasil survey terdapat kurang lebih 12 merek mobil dengan 113 tipe kendaraan yang saat ini beredar di Indonesia. Dari 113 tipe kendaraan yang ada, sebanyak 59 tipe kendaraan (52,21%) direkomendasikan menggunakan bahan bakar bensin RON 92, sebanyak 32 tipe kendaraan (28,32%) direkomendasikan menggunakan bahan bakar bensin RON 95, dan sebanyak 22 tipe kendaraan (19,47%) direkomendasikan menggunakan bahan bakar bensin RON 88.
CHARACTERIZATION OF THERMAL PRECIPITATOR IN SMOKE COLLECTOR BY USING PARTICLE COUNTER Hakim, Imansyah Ibnu; Suryawan, Bambang; Kartika D, I Made; Putra, Nandy; Wibowo, Cahyo Setyo
Scientific Contributions Oil and Gas Vol 35, No 1 (2012)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.35.1.641

Abstract

Air pollution in major cities in many countries has reaching a very concerning level. One of thecause of air pollution is pollution caused by smoke aerosol. Smoke aerosols that has an averageparticle diameter of 0.1 μm – 1 μm can be found in cigarette smoke, diesel vehicle fume, industrialfume and many else. This condition will be worsen by the increase in the number of smokers, motorvehicles and industry. Therefore we need to pursue the control method for that kind of air pollution.In the literature study, it’s found that the cleaning method of air fi ltration for fi ne particle withdimension of 0.01 – 5 μm are by using thermal precipitator. Thermal precipitator is one method ofair fi ltration based on thermophoretic force, which is if there is a temperature difference betweentwo plates, it will cause the force that will push the particles between the two plates toward theplate that has lower temperature. In the effort to help control and reduce the air pollution, for thisstudy we made a thermal precipitator test equipment to deposit the particles in the air with the useof thermophoretic force. That force is the force applied to the particles that suspended in the fl uidfl ow. The temperature difference between two plates is set at ΔT=5, 10, 15, and 20oC. This studyutilized gas sensors to observe the characterization of thermal precipitator. From the experimentand analysis can be concluded that thermal precipitator can be applied as a smoke collector.
Analysis On Dimethyl Ether (Dme) Characteristics As A Liquid Petroleum Gas (Lpg) Fuel Substitution For Household Stove Wibowo, Cahyo Setyo; Anggarani, Riesta; Rulianto, Dimitri; Aisyah, Lies
Scientific Contributions Oil and Gas Vol 36, No 3 (2013)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.36.3.768

Abstract

Increasing growth of population will lead to increasing energy needs; therefore it is necessary to find alternative energy other than fossil fuel. Currently, energy sources in Indonesia are mainly derived from oil and natural gas such as LPG. Starting from 2008, LPG demand increased significantly for households and small industries as a result of government policy on conversion of kerosene to LPG. To meet this demand, the government imports LPG up to 2 million tons per year. In order to overcome LPG crisis, an alternative energy is required to be developed without changing either the distribution system, technical or commercial used. An option among others is dimethyl ether (DME) derived from low calori’s coal gasification. In this research analysis characteristics of DME is compared to LPG (as fuel reference) used. The test methods carried out refers to the specification of LPG issued by Directorate General of Oil and Gas. Based on the results, it shows that the characteristics of the fuel LPG mixed with DME 20% and 50% have some good results particularly on physical and chemical properties, stability and homogeneous of gas. Hence, LPG mixed DME 20% and 50% can be used as a substitute fuel for household stove.
Oxidation Stability Improvement For Jatropha Biodiesel To Meet The International Standard For Automotive Applications Fajar, Rizqon; Wibowo, Cahyo Setyo; Yubaidah, Siti
Scientific Contributions Oil and Gas Vol 34, No 1 (2011)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.34.1.794

Abstract

Biodiesel from Jatropha oil has several advantages compared to which from Palm oil, among others better cold flow properties (lower cloud point, pour point and CFPP). However, Jatropha biodiesel has an oxidation stability that is too low (2-3 hours) so that its application in the diesel engine is not acceptable. This paper reports the effect of addition of Palm bodiesel and commercial anti-oxidant on the oxidation stability of Jatropha biodiesel. The objective of this research is to find the formulation for Jatropha biodiesel which will meet the oxidation stability determined by World Wide Fuel Charter 2009 (WWFC) of min.10 hours. The required addition of BHT into Jatropha biodiesel is more than 10000 ppm to meet the WWFC specification. The addition of BHT will decrease to less than 10000 ppm if the Jatropha biodiesel was blended with Palm biodiesel as much as 60% v/v. Addition of antioxidant should be limited to a minimum value because there are also concerns about the negative effects of antioxidants on the engine components
A Review Of Biodiesel Development In Indonesia: Current Status, Future Potential And Its Impact On The Environment Aisyah, Lies; Wibowo, Cahyo Setyo
Scientific Contributions Oil and Gas Vol 34, No 3 (2011)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.34.3.804

Abstract

Indonesian government issued National Energy Policy in 2006 that will reduce role of fossil fuels and increase role of renewable energy in 2025 as a target year. Bio-fuels are one of the renewable energy focuses in Indonesia. In 2009, biodiesel production capacity was 1.12 tons per year and expected to rise every year. Target of biodiesel usage increasesgradually from B-10 in 2006-2010, B-15 in 2011-2016 and B-20 in 2016-2025. The policy and its target are set by the government to diversification energy source, to boost economic growth (especially regional development and creation of employment) and to reduce greenhouse gas emissions. Currently the main feedstock of biodiesel in Indonesia is derived from palm oil. Some concerns arise related to palm oil biodiesel such as competition between food versus energy and environmental issue in particular replacing forest to oil palm plantations and biodiversity loss. Therefore, development of biodiesel feedstock from non-edible crops and can be grown in non-arable land are very important for future biodiesel development in order to eliminate competition with food and prevent deforestation and biodiversity loss.