Indonesian Journal of Chemistry
Vol 22, No 5 (2022)

Optimization of Aptamer-Based Electrochemical Biosensor for ATP Detection Using Screen-Printed Carbon Electrode/Gold Nanoparticles (SPCE/AuNP)

Rahmaniar Mulyani (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor 45363, West Java, Indonesia
Department of Chemistry, Faculty of Sciences and Informatics, Universitas Jendera)

Nida Yumna (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor 45363, West Java, Indonesia)
Iman Permana Maksum (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor 45363, West Java, Indonesia)
Toto Subroto (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor 45363, West Java, Indonesia)
Yeni Wahyuni Hartati (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor 45363, West Java, Indonesia)



Article Info

Publish Date
28 Sep 2022

Abstract

Electrochemical biosensors are used to detect adenosine triphosphate (ATP) levels, which are involved in a variety of biological processes, such as regulating cellular metabolism and biochemical pathways. Therefore, this research aims to develop an aptamer-based electrochemical biosensor with Screen Printed Carbon Electrode/gold nanoparticles (SPCE/AuNP) and collect data as well as information related to ATP detection. The modification of SPCE with AuNP increased the analyte’s binding sensitivity and biocompatibility. The aptamer was selected based on its excellent bioreceptor characteristics. Furthermore, aptamer–SH (F1) and aptamer-NH2 (F2) were immobilized on the SPCE/AuNP surface, which had been characterized using SEM, EIS, and DPV. Also, the ATP-binding aptamers were electrochemically characterized using the K3[Fe(CN)6] redox system and Differential Pulse Voltammetry (DPV). According to the optimization results using the Box-Behnken experimental design, the ideal conditions obtained from the factors influencing the experiment were the F1 concentration and incubation time of 4 µM and 24 h, respectively, as well as F1/F2/ATP incubation time of 7.5 min. Meanwhile, for the range of 0.1 to 100 µM, the detection (LoD) and quantification (LoQ) limits were 7.43 and 24.78 µM, respectively. Therefore, this aptasensor method can be used to measure ATP levels in real samples.

Copyrights © 2022






Journal Info

Abbrev

ijc

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology ...