International Journal of Engineering, Science and Information Technology
Vol 3, No 2 (2023)

Synthesis and Characterization of Chitosan-Pectin-Citric Acid-Based Hydrogels for Biomedical Applications (Primary Wound Dressings)

Suryati Suryati (Universitas Malikussaleh)
Rizka Mulyawan (Universitas Malikussaleh)
Sulhatun Sulhatun (Universitas Malikussaleh)
Muhammad Muhammad (Universitas Malikussaleh)
Nikmat Wanda (Universitas Malikussaleh)



Article Info

Publish Date
24 Jun 2023

Abstract

This study aims to analyze the processing of chitosan-pectin biocomposite hydrogel with the addition of citric acid to improve the quality of the biocomposite for primary wound dressing applications. The method is printing the biopolymer solution in a glass mold, then drying at 50oC. Chitosan 90.2% DD and pectin dissolved in 1% acetic acid with a ratio (w/w) of 50:50. The two ingredients were mixed using a magnetic stirrer at room temperature for 30 minutes until completely dissolved, then added citric acid crosslinking agent with various concentrations of 2,4, 6,8,10 (%). The test results for the characteristics of the chitosan-pectin-acid biocomposite Citrate obtained the best thickness in the composition variation (50:50:8) of 0.31 mm. The analysis results of the best absorption of the chitosan-pectin-citric acid biocomposite on the composition variation (50:50:6) were 185%. In the swelling analysis of the chitosan-pectin-citric acid biocomposite, the variation in composition (50:50:10) was 403%. The tensile strength test results of the chitosan-pectin-citric acid biocomposite decreased with the addition of citric acid, the best obtained was 20.76 MPa, and the best elongation was 76.0%. Test results for the functional group of the chitosan-pectin-CaCl2 biocomposite for the presence of O-H, C-H, N-H bonds in the fact of O-H, C-H, N-H bonds at a wavelength of 4000-2500 cm-1, C=O, C=N, C=C at a wavelength of 2000 -1500, and the specific absorption of the chitosan-pectin-citric acid biocomposite 400-1400 cm-1 indicates that the resulting membrane tends to be polar, hydrophilic and environmentally friendly because it can be degraded. Based on the expected test results, it was shown that the chitosan-pectin-CaCl2 biocomposite has the potential to be applied as an ideal primary wound dressing for wound healing and protection.

Copyrights © 2023