International Journal of Renewable Energy Development
Vol 11, No 4 (2022): November 2022

Enhancing Ionic Conductivity of Carboxymethyl Cellulose-Lithium Perchlorate with Crosslinked Citric Acid as Solid Polymer Electrolytes for Lithium Polymer Batteries

Akhiruddin Maddu (Department of Physics, IPB University)
Ahmad Sofyan Sulaeman (Department of Physics, Faculty of Science, Universitas Mandiri)
Setyanto Tri Wahyudi (Department of Physics, IPB University)
Abdulloh Rifai (Research Center for Advanced Materials, National Research and Innovation Agency (BRIN))



Article Info

Publish Date
01 Nov 2022

Abstract

Lithium batteries development are triggered so many efforts in producing electronic devices due to its excellent performance as energy storage systems. One of the appealing points solid polymer electrolytes for developing solid-state lithium batteries. In this study, Solid polymer electrolytes with crosslinked treatment (SPE-C) were prepared from carboxymethyl cellulose-lithium perchlorate (CMC-LiClO4) and citric acid (CA) as a crosslinker via solution casting method. All SPE-C membranes were assembled into lithium battery coin cells. Degree of crosslinked and degradation were measured to observe crosslink formation in SPE-C membranes and confirmed by fourier transform infrared (FTIR), whereas SPE-C in coin cells were characterized by electrochemical impedance spectroscopy (EIS) and linear sweep voltammograms (LSV). The results showed that crosslinked process is successfully obtained with C=O from ester linkage of CA vibration within COO- of CMC for the crosslinking bond formation. The crosslink effect also contributed on enhancing ionic conductivities of SPE-C in coin cells from EIS results. The highest ionic conductivity was obtained in SPE-C2 (1.24×10-7 S/cm) and electrochemically stable in 2.15 V based on LSV measurement. SPE-C2 has good dielectric behavior than the others due to the high ions mobilities for migration process from ion clusters formation, thus it would be useful for further study in obtaining the powerful solid-state lithium polymer batteries.

Copyrights © 2022






Journal Info

Abbrev

ijred

Publisher

Subject

Control & Systems Engineering Earth & Planetary Sciences Electrical & Electronics Engineering Energy Engineering

Description

The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, ...