cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol 6, No 3 (2020): March" : 15 Documents clear
Conversion of Waste Marble Powder into a Binding Material Mohammad Adeel Khan; Bazid Khan; Khan Shahzada; Sajjad Wali Khan; Nauman Wahab; Muhammad Imran Ahmad
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091481

Abstract

In the marble industry, a lot of marble is wasted in the form of odd blocks of various sizes and slurry consisting of water and micro-fine particles. The slurry on drying converts into powder. Both slurry and powder have adverse effects on the environment. This research is focused on the gainful utilization of waste marble powder (WMP) by converting it into a valuable binding material. For this purpose, WMP and clay were collected, and their physical and chemical properties were determined. A mix of WMP and clay was prepared and burnt at a temperature around 1300 oC. The burnt mix was ground to powder form to get marble cement (MC). The MC was then used in mortar. The compressive and flexural strengths of mortar cubes and prisms were determined. Apart from this, X-ray diffraction (XRD) analysis, thermo-gravimetric analysis (TGA) and scanning electron microscopic (SEM) analysis were also carried out. The chemical composition showed that the MC has 52.5% di-calcium silicate (C2S) and 3.5% tri-calcium silicate (C3S).The  compressive strength of MC mortar after 28 days curing is 6.03 MPa, which is higher than M1 mortar of building code of Pakistan (5 MPa). The compressive strength of MC mortar after one year is 20.67 MPa, which is only 17% less than OPC mortar.
STUDY A STRUCTURAL BEHAVIOR OF ECCENTRICALLY LOADED GFRP REINFORCED COLUMNS MADE OF GEOPOLYMER CONCRETE Nhabih, Hussein Talab; Hussein, Ahmed M.; Salman, Marwa Marza
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091492

Abstract

This study investigated a modern composite material, which is a short geopolymer concrete column (GPCC) reinforced by GFRP bars. The structural performances of GPCC subjected to eccentric load were studied and compared to the normal strength concrete column (NSCC) reinforced by steel bars. In this study, the primary experimental parameters were the reinforcement bars types, load eccentricity, and concrete types. Seven short columns were tested: three normal strength concrete columns reinforced by steel bars, three geopolymer concrete columns reinforced by GFRP bars and one normal strength concrete column without reinforcement. The model dimensions chosen in the present study was a square section of 130×130 mm and a total height of 850 mm. It was shown that the steel bars contribute about 16.47% of column capacity under concentric load. Comparing with the normal strength concrete column, a geopolymer concrete column reinforced by GFRP bars showed a little increase in ultimate load (5.17%) under concentric load. Under the load eccentricity of 130 mm, a geopolymer concrete column reinforced by GFRP bars showed a significant increase in the ultimate load (69.37%). Under large eccentricity, a geopolymer concrete column reinforced by GFRP bars has an outstanding effect on the columns' ultimate load capacity. Also, the sine form can be utilized for GPCC to find the lateral deflection along with the column high at different load values up to the failure.
Tests on the Mechanical Properties of Corroded Cement Mortar after High Temperature Liang-Xiao, Xiong; Cong, Chen
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091483

Abstract

Durability of cement mortar and concrete materials under sea water condition is always an important research topic. The objective of this work is to understand the mechanical properties of corroded cement mortar after high temperature, the cement mortar specimens after high temperature were placed in water and sodium sulfate solution, and then the uniaxial compression tests were carried out on the cement mortar specimens after corroded. Test results show that both the differences of compressive strength and strain at the peak stress after high temperature caused by high temperature, are relatively small when the specimens are eroded in water, and the differences are relatively high when the specimens are eroded in sodium sulfate solution. The compressive strength of the cement mortar specimens under normal temperature eroded in sodium sulfate solution is highest, and that eroded in water is lowest. The compressive strength of specimen after high temperature eroded in water is highest and that eroded in sodium sulfate solution is lowest. The strain at the peak stress of specimen, whether after high temperature or not, is highest when eroded in sodium sulfate solution, and that eroded in water is lowest. At present, there are few research results about the mechanical properties of concrete first after high temperature and then after sea water corrosion. The work in this paper can enrich the results in this area.
Tensile Testing of Soils: History, Equipment and Methodologies Al Houri, Ausamah; Habib, Ahed; Elzokra, Ahmed; Habib, Maan
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091494

Abstract

Tensile strength of soil is indeed one of the important parameters to many civil engineering applications. It is related to wide range of cracks specially in places such as slops, embankment dams, retaining walls or landfills. Despite of the fact that tensile strength is usually presumed to be zero or negligible, its effect on the erosion and cracks development in soil is significant. Thus, to study the tensile strength and behavior of soil several techniques and devices were introduced. These testing methods are classified into direct and indirect ways depending on the loading conditions. The direct techniques including c-shaped mold and 8-shaped mold are in general complicated tests and require high accuracy as they are based on applying a uniaxial tension load directly to the specimen. On the other hand, the indirect tensile tests such as the Brazilian, flexure beam, double punch and hollow cylinder tests provide easy ways to assess the tensile strength of soil under controlled conditions. Although there are many studies in this topic the current state of the art lack of a detailed article that reviews these methodologies. Therefore, this paper is intended to summarize and compare available tests for investigating the tensile behavior of soils.
Cost & Time Interaction Behavior on Construction Materials Procurement and Execution Processes in Infrastructure Projects Aktham Kh. Majeed; Kadhim Raheim Erzaij
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091489

Abstract

The cost of construction materials forms a large proportion of the total cost of construction projects Thus, the lack of a sound time and cost management planning for construction materials procurement will lead to deficiencies in the supply and flow of construction materials, not to mention its negative consequences of delays and financial losses which are often cited as major causes of product degradation. This research will present the development of an applicable procurement management system model particularly for UPVC & Ductile pipes used in water and sewage water infrastructure Projects in Iraq. Actual data are collected from seven Iraqi infrastructure projects. These data are analyzed by using SBSS v. 23 statistical analysis programs. On the bases of analyses results, four mathematical relationships have been developed by using MATLAB R2015B & CurveExpert Basic software to be used on building a realistic procurement management system with accurate, acceptable, and appropriate results for the construction materials procurement conditions in Iraq, the system was finally tested by using actual data from Al-Latifiyia sewer project in Baghdad governorate, where the system showed an accuracy results of 86%.
Heavy Metal Removal Investigation in Conventional Activated Sludge Systems Magdi Buaisha; Saziye Balku; Şeniz Özalp Yaman
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091484

Abstract

The combination of industrial and domestic wastewater in municipal WWTPs (waste water treatment plants) may be economically profitable, but it increases the difficulty of treatment, and also has some detrimental effects on the biomass and causes a low-quality final effluent. The present study evaluates the treatment process both in the presence and absence of heavy metals using ASM3 (activated sludge model no.3) so as to improve the model by means of incorporating other novel inhibitory kinetic and settler models. The results reveal that the presence of heavy metal, a case study for copper and cadmium at a concentration of 0.7 mgL−1 in a biological treatment system has a negative effect on heterotrophic bacteria concentration by 25.00 %, and 8.76 % respectively. Meanwhile, there are no important changes in COD (chemical oxygen demand), SS (total suspended solids) and TN (total nitrogen) in the final effluent in the conventional system. However, all these parameters are acceptable and consistent with EU Commission Directives. The results indicate that ASM3 can predict and provide an opportunity of the operation for an activated sludge wastewater treatment plant that receives the effluent from an industrial plant.
Predictive Analytics for Roadway Maintenance: A Review of Current Models, Challenges, and Opportunities Arash Karimzadeh; Omidreza Shoghli
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091495

Abstract

With the pressing need to improve the poorly rated transportation infrastructure, asset managers leverage predictive maintenance strategies to lower the life cycle costs while maximizing or maintaining the performance of highways. Hence, the limitations of prediction models can highly impact prioritizing maintenance tasks and allocating budget. This study aims to investigate the potential of different predictive models in reaching an effective and efficient maintenance plan. This paper reviews the literature on predictive analytics for a set of highway assets. It also highlights the gaps and limitations of the current methodologies, such as subjective assumptions and simplifications applied in deterministic and probabilistic approaches. This article additionally discusses how these shortcomings impact the application and accuracy of the methods, and how advanced predictive analytics can mitigate the challenges. In this review, we discuss how advancements in technologies coupled with ever-increasing computing power are creating opportunities for a paradigm shift in predictive analytics. We also propose new research directions including the application of advanced machine learning to develop extensible and scalable prediction models and leveraging emerging sensing technologies for collecting, storing and analyzing the data. Finally, we addressed future directions of predictive analysis associated with the data-rich era that will potentially help transportation agencies to become information-rich.
STUDY OF PAN FIBER AND IRON ORE ADSORBENTS FOR ARSENIC REMOVAL Bhatti, Zulfiqar Ali; Qureshi, Khadija; Maitlo, Ghulamullah; Ahmed, Shoaib
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091491

Abstract

The main idea to conduct this study is the treatment of hazardous arsenite (As+3)  and arsenate (As+5)from water by two efficient adsorbetns i.e. polyacrylonitrile fiber (organic) and iron ore (inorganic). Polyacrylonitrile (PAN) fibers were chemically modified prior to loading iron using a solution of diethylenetriamine and aluminum chloride hexahydrate. The characterization of PAN fibers was performed through FTIR spectroscopy, which shows the binding of functional groups on PAN fibers surfaces. Atomic absorption spectrometer (AAS) was used to analyze arsenic concentration in samples. The impact of pH, dosage, shaking (contact) time and shaking speed was studied and parameters were optimized for further study. The highest adsorption of 98% is exhibited by modified PAN fiber for As+5 while for As+3 removal is 80%. Modified PAN also showed higher adsorption capacity of 42×103?g/g for As+5 which is better than the As+3 adsorption capacity 33×103 ?g/g. Overall results demonstrated that MPAN adsorbent is better than the iron ore adsorbent for the treatment of both As+3 and As+5. Comparative studies of PAN Fiber and iron ore adsorbents revealed that PAN fibers had better adsorption properties than iron ore for As+3  and As+5 in terms of percentage removal and capacity.
Investigating the Behavior of Offshore Platform to Ship Impact Rafi M. Qasim; Abdulameer Qasim Hasan
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091486

Abstract

Offshore platform structure has the ability to resist wave loading, wind loading, operation loading, and ship collision, therefore, it is important to investigate the structural behavior of platform taking into consideration soil-structure-pile interaction when the platform is subjected to ship impact at a different location on deck slab. The present study deals with platform supported by pile foundation. The effect of soil-pile interaction on behavior of platform to lateral impact load is investigated by using finite element simulation which is performed by ABAQUS software. From the results obtained, it is obvious that the ship collision position on platform will be reflected on ultimate capacity of structure so the structure will undergo to loose ultimate capacity due to damage that occurs from the ship collision. This study comprises investigation of pile lateral displacement, pile twist angle, pile shear force distribution, pile bending moment distribution and deck slab displacement. It also clarifies that the pile displacement has been reflected on pile critical length. The twist angle of the pile is more sensitive to soil type and loading condition. It is seems that the shear force distribution and bending moment distribution are affected by loading condition and soil type. Finally this study shows that the response of deck slab depends on soil type, soil-pile interaction and loading condition.
Delay Factors in Building Construction Project of State Elementary School Raden Risang Haryo C. D.; Lalu Mulyadi; Tiong Iskandar
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091488

Abstract

The state elementary school No.027 building construction project in Samarinda Ulu District, Samarinda City, Indonesia, in the 2019 fiscal year, which experienced delays, was allegedly due to the use of inappropriate scheduling methods. Therefore, to overcome these delays, it must use the curtain methods that are appropriate with efficient cost. In this study, we used factor analysis and multiple linear regression methods to measure answers from a questionnaire distributed to 45 respondents like consultants, contractors, and owners who were involved in the state elementary school in above. The results show that the elements that influence the delay in the construction of state elementary school building No.027 Samarinda is a factor in the work scheduling method and construction delay. For Scheduling work get a coefficient value is , and for construction delay method get a coefficient value is . It can be concluded is the most dominant factor construction delay in the State Elementary School No.027 Samarinda in case above is the Work Scheduling Method with a value coefficient is 1.057.

Page 1 of 2 | Total Record : 15


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue