cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 7, No 9 (2021): September" : 12 Documents clear
Measuring of Subjective and Objective Aesthetics in Planning and Urban Design Al-Salam, Nadia A.; Al-Jaberi, Ahmed A.; Al-Khafaji, Ahmed S.
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091743

Abstract

The article includes the concept of aesthetics through what has been dealt with in the literature by philosophers and researchers who have addressed this concept in an attempt to derive indicators of aesthetics. The article adopted a descriptive and analytical methodology by reviewing recent literature on the concept of aesthetics and its relation to urban planning and design issues. Many subjective and objective aesthetics indicators have been identified, some of which are classified under real aesthetics, and some under fake aesthetics. The indicators were applied to the Kufa Mosque complex and Sahla Mosque complex as a comparative case study. It was found that the indicators of real aesthetics have a higher weight in determining the final aesthetic judgment on the complex form versus the fake indicators, which in turn reinforced the weighting of the subjective aspect over the objective. This was consistent with the answer to the question directed to the sample about which complexes are more aesthetic. The answer was that the Kufa Mosque complex is most aesthetically. This was proven by the questions directed in the questionnaire, which outweighed the real aesthetic indicators for the Kufa Mosque complex. As for the results of analyzing the indicators of fake aesthetic were equal, as each complex achieved higher values in three indicators. Doi: 10.28991/cej-2021-03091743 Full Text: PDF
Utilization of Marble Wastes in Clay Bricks: A Step towards Lightweight Energy Efficient Construction Materials Zeeshan Khan; Akhtar Gul; Syed Azmat Ali Shah; Samiullah Qazi; Nauman Wahab; Eid Badshah; Tayyab Naqash; Khan Shahzada
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091738

Abstract

Marble dust is one of the hazardous byproducts of marble-processing factories and requires planned disposal. Its beneficial use as a construction material will add to the sustainability, and most importantly, might overcome the burden of marble waste disposal. However, the use of marble dust in concrete has a negative impact. Therefore, this research examines various properties related to the utilization of such material in ceramic clay, and therefore its effects on the use of clay bricks are investigated. The research activity covers the categorization of marble dust powder from three different sources: Ziarat in Mohmand Agency, Buneer, and Mullagori (Pakistan). Its utilization in different proportions preparation of bricks is also addressed. Through the partial replacement of clay with marble dust from 0 to 30% by weight with amplification of 5%, seven mix designs are examined. The test result includes Bulk density, water absorption, porosity, thermal insulation, and strength. The partial replacement of clay with marble dust reduced its weight, strength and increased its porosity, water absorption, and thermal insulation. Furthermore, the utilization of marble powder in bricks minimizes soil erosion and reduces pollution to the environment. Doi: 10.28991/cej-2021-03091738 Full Text: PDF
The Impact of HDPE Plastic Seeds on the Performance of Asphalt Mixtures Daud Nawir; Achmad Zultan Mansur
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091744

Abstract

Plastic waste processing is a problem that almost several countries in the Asian region are unable to overcome. One of the latest innovations carried out in the field of road pavement construction is mixing HDPE type plastic waste that has been processed into plastic seeds into the asphalt concrete mixture. Previous research has shown that HDPE plastic waste may be reused to improve the physical properties of temperature-sensitive asphalt and improve the stability of asphalt concrete. This study was conducted to determine the effect of using HDPE plastic ore as a mixed additive on the Asphalt Concrete-Wearing Course (AC-WC) using Marshall parameters. Marshall Parameters used are stability, flow, VIM, VMA, VFA, and MQ. The study was conducted in a laboratory by testing 42 samples with different levels of HDPE plastic seeds, mixed using wet methods to determine Marshall Characteristics. Manufacture of test objects using asphalt type, which has a penetration rate of 60/70. The initial research results showed that the optimal asphalt content (OAC) is 5.5%, with the percentage content of HDPE plastic seeds around 0, 1, 2, 3, 4, 5, 6, and 7% compared to asphalt weight. The results showed that the effect of HDPE plastic seed content on the AC-WC mixture increased the value of Marshall Characteristics and met all the requirements of SNI 06-2489-1991. This finding shows that HDPE plastic seeds deserve to be an alternative material for road pavements. Doi: 10.28991/cej-2021-03091744 Full Text: PDF
2D-HEC-RAS Modeling of Flood Wave Propagation in a Semi-Arid Area Due to Dam Overtopping Failure Karim, Ibtisam R.; Hassan, Zahraa F.; Abdullah, Hassan Hussein; Alwan, Imzahim A.
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091739

Abstract

Dam overtopping failure and the resulting floods are hazardous events that highly impact the inundated areas and are less predictable. The simulation of the dam breach failure and the flood wave propagation is necessary for assessing flood hazards to provide precautions. In the present study, a two-dimensional HEC-RAS model was used to simulate the flood wave resulting from the hypothetical failure of Al-Udhaim Dam on Al-Udhaim River, Iraq, and the propagation of the resulting dam-break wave along 100 km downstream the dam site for the overtopping scenario. The main objective is to analyze the propagation of the flood wave so that the failure risk on dam downstream areas can be assessed and emergency plans may be provided. The methodology consisted of two sub-models: the first is the dam breach failure model for deriving the breach hydrograph, and the second is the hydrodynamic model for propagating the flood wave downstream of the dam. The breach hydrograph is used as an upstream boundary condition to derive the flood impact in the downstream reach of Al- Udhaim River. The flood inundation maps were visualized in RAS-Mapper in terms of water surface elevation, water depth, flow velocity, and flood arrival time. The maximum recorded values were: 105 m (a.m.s.l.), 18 m, 5.5 m/s, and, respectively. The flow velocity decreased from upstream to downstream of the terrain, which means less risk of erosion in the far reaches downstream of the study area. The inundation maps indicated that the water depth and flow velocity were categorized as Catastrophic limits on the terrain's area. The results offer a way to predict flood extent and showed that the impact of a potential dam break at Al-Udhiam Dam will be serious, therefore, suitable management is needed to overcome this risk. Moreover, the maps produced by this study are useful for developing plans for sustainable flood management. Doi: 10.28991/cej-2021-03091739 Full Text: PDF
Physico-mechanical Behaviors and Durability of Heated Fiber Concrete Redha Benali; Mekki Mellas; Mohamed Baheddi; Tarek Mansouri; Rafik Boufarh
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091745

Abstract

The objective of the present manuscript is to describe the impact of polypropylene fibers on the behavior of heated concrete subjected to heating and cooling cycles at temperatures of 200, 450 and 600 °C respectively for six hours, through a series of experimental tests on mass loss, water absorption, porosity, compressive and tensile strength. For this purpose, mixes were prepared with a water/cement ratio with the incorporation of polypropylene fibers with a rate varying from 0.5 to 1.5%. These fibers were added in order to improve the thermal stability and to prevent the concrete from splitting. The results show that a considerable loss of strength was noticed for all tested specimens. The relative compressive strengths of the concretes containing polypropylene fibers were higher than those of the concretes without fibers. Also, a greater loss of mass of the polypropylene fibers compared to those without fibers was noticed when increasing the temperature. The flexural tensile strength of the concrete was more sensitive to elevated temperatures than the compressive strength and a rapid increase in porosity was observed for the fiber-reinforced concrete compared to the reference concrete. Furthermore, water absorption by the fibers is proportional to the fiber content of the concrete. Doi: 10.28991/cej-2021-03091745 Full Text: PDF
Groundwater Quality Assessment for Irrigation: Case Study in the Blinaja River Basin, Kosovo Hazir S. Çadraku
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091740

Abstract

Groundwater is an important source for a drink and irrigation in the Blinaja river basin. Understanding knowledge of irrigation water quality is critical to the management of water for long-term productivity. Historically for this study area there is no data and information regarding the quality and use of water for irrigation needs. Therefore, there was a need to assess water quality based on data analysed from eight sampling points. The purpose of this paper is to evaluate, relying on analytical results, the quality of groundwater in the Blinaja river basin for the purpose of its use for irrigation of agricultural crops. For this purpose, in the Blinaja River Basin in different months during 2015, 2016, 2018 and 2019, 28 water samples were taken to assess the quality of groundwater for irrigation. Water samples were analysed in a laboratory for some of the key quality indicators; pH, EC, hardness (TH), Ca, Mg, Na, K, HCO3, SO4, Cl, etc. and then irrigation water quality indices were calculated such as: percentage of Na (% Na), SAR (Sodium Adsorption Ratio), PI (Permeability index), KR (Kelly's ratio), etc. The overall objective of this study was to assess the quality of water to be used by the inhabitants of the area for irrigation of agricultural crops. Analytical procedures for the laboratory determinations of water quality have been given in several publications (USDA Handbook 60 by Richards, 1954; FAO Soils Bulletin 10 by Dewis and Freitas1970; APHA 2005). Doi: 10.28991/cej-2021-03091740 Full Text: PDF
Soil Improvement Using Waste Marble Dust for Sustainable Development Abdul Waheed; Muhammad Usman Arshid; Raja Abubakar Khalid; Syed Shujaa Safdar Gardezi
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091746

Abstract

The soils which show very high shear strength in a dry state but rapidly lose their strength on wetting are known as collapsible soils. Such rapid and massive loss of strength produces severe distress leading to extensive cracking and differential settlements, instability of building foundations, and even collapse of structures built on these soils. Waste marble dust is an industrial byproduct and is being produced in large quantities globally poses an environmental hazard. Therefore, it is of the utmost need to look for some sustainable solution for its disposal. The present study focused on the mitigation of the collapse potential of CL-ML soil through a physio-chemical process. The soil is sensitive to wetting, warranting its stabilization. Waste marble dust (WMD) in varying percentages was used as an admixture. The study's optimization process showed that geotechnical parameters of collapsible soil improved substantially by adding waste marble dust. Plasticity was reduced while Unconfined Compressive Strength (UCS) significantly increased while swelling was reduced to an acceptable limit. The California Bearing Ratio (CBR) also exhibits considerable improvement. This study appraises the safe disposal of hazardous waste safely and turns these into suitable material for engineering purposes. Doi: 10.28991/cej-2021-03091746 Full Text: PDF
Performance Evaluation of Fatigue and Fracture Resistance of WMA Containing High Percentages of RAP Saad Tayyab; Arshad Hussain; Fazal Haq; Afaq Khattak
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091741

Abstract

Sustainability and durability are the key requirements of pavement structure. Sustainability of asphalt pavement structure involves utilization of Warm Mix Asphalt (WMA) technologies with the addition of Reclaimed Asphalt Pavement (RAP), where durability of asphalt involves performance parameters like fatigue and fracture resistance properties etc. Utilizing the RAP content in asphalt mix increases the mixing and compaction temperature which may degrade the performance of asphalt. Hence, numerous studies have recommended different WMA technologies to decrease mixing and compaction temperature of asphalt mix containing RAP. The present research work evaluates the fatigue and fracture performance of WMA and Hot Mix Asphalt (HMA) with varying percentages of RAP and Sasobit. Different mixes of WMA and HMA were designed with varying percentages of RAP (0, 20, 40 and 60%) through Marshall Mix design. Sasobit (organic/wax-based additive) was used as WMA technology to prepare WMA at varying percentages (0, 2, 4 and 6%). The fatigue behavior of asphalt was evaluated using four-point bending test, where fracture resistance of asphalt was determined using Semi Circular Bending (SCB) test in the laboratory. Fatigue and fracture resistance of WMA were improved with the increase in percentages of Sasobit and RAP content, while the addition of RAP in HMA showed a decreasing trend of fatigue and fracture resistance due to the stiffer nature of RAP. Furthermore, WMA was identified as economical for construction besides other benefits like improved properties and environment friendly asphalt mix. Doi: 10.28991/cej-2021-03091741 Full Text: PDF
A Comparison of Multiple Imputation Methods for Recovering Missing Data in Hydrological Studies Fatimah Bibi Hamzah; Firdaus Mohd Hamzah; Siti Fatin Mohd Razali; Hafiza Samad
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091747

Abstract

Missing data is a common problem in hydrological studies; therefore, data reconstruction is critical, especially when it is crucial to employ all available resources, even incomplete records. Furthermore, missing data could have an impact on statistical analysis results, and the amount of variability in the data would not be fittingly anticipated. As a result, this study compared the performance of three imputation methods in predicting recurrence in streamflow datasets: robust random regression imputation (RRRI), k-nearest neighbours (k-NN), and classification and regression tree (CART). Furthermore, entire historical daily streamflow data from 2012 to 2014 (as training dataset) were utilised to assess and validate the effectiveness of the imputation methods in addressing missing streamflow data. Following that, all three methods coupled with multiple linear regression (MLR), were used to restore streamflow rates in Malaysia's Langat River Basin from 1978 to 2016. The estimation techniques effectiveness was evaluated using metrics inclusive of the Nash-Sutcliffe efficiency coefficient (CE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE). The results confirmed that RRRI coupled with MLR (RRRI-MLR) had the lowest RMSE and MAPE values, outperforming all other techniques tested for filling missing data in daily streamflow datasets. This indicates that the RRRI-MLR is the best method for dealing with missing data in streamflow datasets. Doi: 10.28991/cej-2021-03091747 Full Text: PDF
Numerical Modeling of Soil Erosion with Three Wall Laws at the Soil-Water Interface El Assad, Hatim; Kissi, Benaissa; Hassan, Rhanim; Angel, Parron Vera Miguel; Dolores, Rubio Cintas Maria; Chafik, Guemimi; Kacem-Boureau, Mariem
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091742

Abstract

In the area of civil engineering and especially hydraulic structures, we find multiple anomalies that weakens mechanical characteristics of dikes, one of the most common anomalies is erosion phenomenon specifically pipe flow erosion which causes major damage to dam structures. This phenomenon is caused by a hole which is the result of the high pressure of water that facilitate the soil migration between the two sides of the dam. It becomes only a question of time until the diameter of the hole expands and causes destruction of the dam structure. This problem pushed physicist to perform many tests to quantify erosion kinetics, one of the most used tests to have logical and trusted results is the HET (hole erosion test). Meanwhile there is not much research regarding the models that govern these types of tests. Objectives: In this paper we modeled the HET using modeling software based on the Navier Stokes equations, this model tackles also the singularity of the interface structure/water using wall laws for a flow turbulence. Methods/Analysis: The studied soil in this paper is a clay soil, clay soil has the property of containing water more than most other soils. Three wall laws were applied on the soil / water interface to calculate the erosion rate in order to avoid the rupture of such a structure. The modlisitation was made on the ANSYS software. Findings: In this work, two-dimensional modeling was carried of the soil.in contrast of the early models which is one-dimensional model, the first one had shown that the wall-shear stress which is not uniform along the whole wall. Then using the linear erosion law to predict the non-uniform erosion along the whole length. The previous study found that the wall laws have a significant impact on the wall-shear stress, which affects the erosion interface in the fluid/soil, particularly at the hole's extremes. Our experiment revealed that the degraded profile is not uniform. Doi: 10.28991/cej-2021-03091742 Full Text: PDF

Page 1 of 2 | Total Record : 12


Filter by Year

2021 2021


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue