cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta timur,
Dki jakarta
INDONESIA
Spektra: Jurnal Fisika dan Aplikasinya
ISSN : 25413384     EISSN : 25413392     DOI : -
Arjuna Subject : -
Articles 8 Documents
Search results for , issue "Vol 8 No 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023" : 8 Documents clear
COMBINED METHOD OF BULK MATERIAL SHIELDING EVALUATION FOR 200 MEV HIGH ENERGY NEUTRON SOURCE USING PHITS MODELLING AND PARTIAL DENSITY Fitrotun Aliyah; Azhar Abdul Rahman; Yasmin Md Radzi; Imam Kambali
Spektra: Jurnal Fisika dan Aplikasinya Vol 8 No 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023
Publisher : Program Studi Fisika Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/SPEKTRA.081.01

Abstract

Neutron encounters difficulties in shielding protection. Thus, many researchers have performed simulation and experimental research on neutron shielding materials. The characteristic of materials is highly dependent on neutron energy. The evaluation of neutron shielding for various materials, such as iron, concrete, aluminum, and borated polyethylene (BPE), was conducted in this paper through simulation using a Monte Carlo code of PHITS 3.27 and calculation via partial density method. A mono-energetic neutron source with an energy of 200 MeV is emitted perpendicular to the shielding material with a thickness of 105 cm. The parameters measured in this analysis include flux, fast neutron removal cross-section, neutron depth dose, ambient dose H*(10) equivalent, and neutron dose reduction factor (RF). Results show that iron is a good material against high-energy neutron and secondary photon radiation at the energy range with the highest removal cross-section and the lowest RF value (0.39), followed by concrete, BPE, and aluminum. The integrated fluence and effective dose profiles were consistent with previous results in the literature. Benchmarking calculation of neutron dose RF was conducted with other publications and was in good agreement within the value range.
THE CORRELATION BETWEEN ELECTRIC CURRENT PRODUCED AND THE LIGHT SOURCE DISTANCE IN PHOTOELECTRIC EFFECT EXPERIMENTS Upik Rahma Fitri; Esmar Budi; Hadi Nasbey; Mira Ziveria; Intan Muhara
Spektra: Jurnal Fisika dan Aplikasinya Vol 8 No 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023
Publisher : Program Studi Fisika Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/SPEKTRA.081.06

Abstract

In experimental observations of the relationship between the electric current generated and the distance of the light source on the Planck constant device, it can show a comparison between the electric current generated and the variable distance of the light source. The experimental equipment specifications use the Planck constant experimental set with a 12v/35w tungsten halogen lamp, output 15v, accuracy +-0.2%, power requirement 220V, fuse rating 0.5A and red filter. Experiments using the concept of the photoelectric effect phenomenon begin by irradiating metal materials with constant photon light and then the light passes through a red light filter with a wavelength of 635 nm. The use of a filter is done by placing a 635 nm light filter on the light propagation path to the metal material, so that the light that passes through the filter is only light with a wavelength of 635 nm. The choice of the red filter is due to the fact that the frequency of light with a wavelength of 635 nm can cause electrons to come out of the metal as a result of photons hitting electrons in the metal. After the metal material is irradiated with photon light, the electron charges on the metal will be disturbed and come out of the metal. The movement of these electrons produces an electric current whose value can be seen. By testing distances of 18, 20, 22, 24, 26, 28, and 30 cm, the results of a current value of 0.528 are obtained; 0.382; 0.295; 0.232; 0.182 and 0.154. From these experiments it was shown that the further away the light source, the smaller the electric current generated due to the light. This is because the closer the distance to the light source, the more light intensity hitting the metal, this results in a greater number of photons hitting the metal.
HIGH STRENGTH MANGO LEAF WASTE/POLYURETHANE COMPOSITE REINFORCEMENT USING QUARTZ MATERIAL Masturi Masturi; Dante Alighiri; Fadhillah Choirunnisa; Kurnia Galuh Candra Kirana
Spektra: Jurnal Fisika dan Aplikasinya Vol 8 No 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023
Publisher : Program Studi Fisika Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/SPEKTRA.081.05

Abstract

Quartz stone contains silica components (SiO2) which have the ability as a reinforcement material for composite materials. Quartz SEM-EDX testing shows that the quartz silica comonent is 69%. Other components contained in quartz are 34% MgO and 2% CaO. Therefore, quartz stone is used as a reinforcing material in mango leaf waste composite materials. Meanwhile, compressive strength testing of composite materials was carried out with variations of Polyurethane (PU) polymers, namely 1, 2, 3, 4, 5, 6, and 7 grams, obtaining the highest maximum pressure at 6 grams polymer mass, which is 38.91 grams. Testing of composite materials that have been given a mixture of quartz stone with a mass of Polyurethane (PU) 6 grams and a quartz stone variation of 0.03; 0,06; 0,09; 0,12; 0,15; and 0.18 grams obtained the maximum power most optimally there is a quartz mass of 0.06 grams of 40.47 grams. The strength of mango leaf composite meets the strength standard for building materials, namely concrete with a value of 20-150 MPa. This shows that quartz stone can be a composite reinforcement comprehenent for mango leaf waste.
EXPLORING THE INTERCONNECTEDNESS OF COSMOLOGICAL PARAMETERS AND OBSERVATIONS: INSIGHTS INTO THE PROPERTIES AND EVOLUTION OF THE UNIVERSE Budiman Nasution; Ruben Cornelius Siagian; Arip Nurahman; Lulut Alfaris
Spektra: Jurnal Fisika dan Aplikasinya Vol 8 No 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023
Publisher : Program Studi Fisika Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/SPEKTRA.081.03

Abstract

This research aims to investigate the relationship between Confidence Interval, Hubble Parameter, Comoving Distance, and Distance-Volume Relationship, which are important equations in cosmology. The Confidence Interval equation is used to estimate the range of values for the difference between the mean redshift and Hubble parameter. The Hubble Parameter equation is used to measure the expansion rate of the universe, while the Comoving Distance equation is used to calculate the distance between two objects in the expanding universe, and the Distance-Volume Relationship equation is used to calculate the distance between an observer and a cosmic object based on the object's redshift. This study seeks to address several research questions, including the accuracy of estimating parameters using these equations and the potential for developing more precise equations. The study employs cosmological data analysis using the R program to analyze existing data and gain a better understanding of cosmological parameters. The results of this research contribute to our understanding of the nature and evolution of the universe, providing insights into the distribution of matter and the role of dark matter and dark energy in shaping the universe's evolution. By examining the relationship between cosmological parameters, this study enables us to make predictions about cosmic phenomena and improve the accuracy of future measurements. The findings of this research have implications for cosmological research and can aid in the development of more accurate models and theories in the field of cosmology. Overall, this study provides valuable insights into the fundamental equations in cosmology and their relationships, advancing our understanding of the universe's dynamics and evolution.
CHARACTERIZATION OF ENERGY BAND GAP THIN FILM BaTiO3 – BaZr0.5Ti0.5O3 USING DIFUSION REFLECTANCE SPECTROSCOPY (DRS) METHOD Rahmi Dewi; Wesly Arianto Manalu; Brian Noval Asrinaldo; Ari Sulistyo Rini; Yanuar Yanuar
Spektra: Jurnal Fisika dan Aplikasinya Vol 8 No 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023
Publisher : Program Studi Fisika Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/SPEKTRA.081.02

Abstract

Ferroelectric material is a dielectric material that has a high dielectric constant value so that it can be made in the form of thin films. Its application is based on electro-optical properties, one of which is the infrared thermal switch. This paper aims to determine the bandgap energy (Eg) of a 0.3BaTiO3 – 0.7BaZr0.5Ti0.5O3 thin film. The 0.3BaTiO3 – 0.7BaZr0.5Ti0.5O3 thin film is a semiconductor material with the valence band and conduction band separated by an energy bandgap (Eg). Thin films of 0.3BaTiO3 – 0.7BaZr0.5Ti0.5O3 were grown on FTO substrates using the sol-gel method. The films of 0.3BaTiO3 – 0.7BaZr0.5Ti0.5O3 were annealed at different temperatures of 700°C, 750°C and 800°C within 1 hour. Characterization was carried out using Ultra Violet Visible (UV-Vis) spectroscopy to determine Eg using the Diffusion Reflectance Spectroscopy (DRS) method. The DRS method was found to be better for solid materials considering the scattering component. The UV-Vis characterization results show that an increase in annealing temperature causes a decrease in Eg. For example the values ​​at 700°C, 750°C and 800°C are 3.5 ± 0.01 eV; 3.3±0.01 eV and 3.2±0.01 eV. The decrease in Eg is related to the diffusion of Barium Titanate (BaTiO3) ions into the Barium Zirconium Titanate (BZT) lattice forming a new sub-gap which in turn gives BT-BZT the ability to absorb lower light. Lower light absorption means more capable optics for multilayer systems.
A COMBINED METHOD OF 1D AND 2D RESISTIVITY FOR GROUNDWATER LAYER ESTIMATION AT A FARMING AREA IN REJOMULYO VILLAGE Risky Martin Antosia; Muhammad Ramdan
Spektra: Jurnal Fisika dan Aplikasinya Vol 8 No 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023
Publisher : Program Studi Fisika Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/SPEKTRA.081.04

Abstract

The groundwater depends on when it is available, more in the rainy and less in the dry seasons. Fluctuation in water availability is a significant problem in activities continuously requiring large amounts of water, such as agriculture. Hence, it is necessary to increase the number of water resources to meet the community's needs. Therefore, the groundwater layer zone was estimated as an initial study at the dry farmland in Rejomulyo village, Jati Agung district, South Lampung, using a combined method between the 1D resistivity method of the Schlumberger array and the 2D form of the Wenner configuration. Each sounding point and the 2D line have a maximum stretch length of 300 m. The 1D outcome correlates to the 2D data processing result to produce a subsurface lithology model. As a result, the research area has three primary layers with three rock types. The first layer has a resistivity value of less than 20 Ωm and is identified as tuffaceous clay. Then the second layer with a resistivity range of 60–66 Ωm is tuffaceous sand, this rock which is referred to as the groundwater layer with a depth of 11-40 m. The last layer has a high resistivity value of 120–141 Ωm as tuff. Based on the results of 3D visualization, the groundwater layer in the study area spreads to the southeast with a confined aquifer type. This targeted rock layer can be utilized for groundwater production.
FRONT MATTER SPEKTRA VOLUME 8 ISSUE 1, APRIL 2023 Editor Spektra
Spektra: Jurnal Fisika dan Aplikasinya Vol 8 No 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023
Publisher : Program Studi Fisika Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/SPEKTRA.08100

Abstract

BACK MATTER SPEKTRA VOLUME 8 ISSUE 1, APRIL 2023 Editor Spektra
Spektra: Jurnal Fisika dan Aplikasinya Vol 8 No 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023
Publisher : Program Studi Fisika Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/SPEKTRA.081111

Abstract

Page 1 of 1 | Total Record : 8


Filter by Year

2023 2023


Filter By Issues
All Issue Vol 8 No 2 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 2, August 2023 Vol 8 No 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023 Vol 7 No 3 (2022): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 7 Issue 3, December 2022 Vol 7 No 2 (2022): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 7 Issue 2, September 2022 Vol 7 No 1 (2022): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 7 Issue 1, April 2022 Vol 6 No 3 (2021): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 6 Issue 3, December 2021 Vol 6 No 2 (2021): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 6 Issue 2, October 2021 Vol 6 No 1 (2021): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 6 Issue 1, April 2021 Vol 5 No 3 (2020): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 5 Issue 3, December 2020 Vol 5 No 2 (2020): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 5 Issue 2, August 2020 Vol 5 No 1 (2020): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 5 Issue 1, April 2020 Vol 4 No 3 (2019): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 4 Issue 3, December 2019 Vol 4 No 2 (2019): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 4 Issue 2, August 2019 Vol 4 No 1 (2019): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 4 Issue 1, April 2019 Vol 3 No 3 (2018): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 3 Issue 3, December 2018 Vol 3 No 2 (2018): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 3 Issue 2, August 2018 Vol 3 No 1 (2018): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 3 Issue 1, April 2018 Vol 2 No 3 (2017): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 2 Nomor 3, Desember 2017 Vol 2 No 2 (2017): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 2 Nomor 2, Agustus 2017 Vol 2 No 1 (2017): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 2 Nomor 1, April 2017 Vol 1 No 2 (2016): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 1 Nomor 2, Desember 2016 Vol 1 No 1 (2016): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 1 Nomor 1, Agustus 2016 Vol 16 No 3 (2015): SPEKTRA, Volume 16 Nomor 3, Desember 2015 Vol 16 No 2 (2015): SPEKTRA, Volume 16 Nomor 2, Oktober 2015 Vol 16 No 1 (2015): SPEKTRA, Volume 16 Nomor 1, Juni 2015 Vol 15 No 2 (2014): SPEKTRA, Volume 15 Nomor 2, Desember 2014 Vol 15 No 1 (2014): SPEKTRA, Volume 15 Nomor 1, Mei 2014 More Issue