cover
Contact Name
Aly Rasyid
Contact Email
aly.rasyid@dsn.ubharajaya.ac.id
Phone
+628111085034
Journal Mail Official
aly.rasyid@dsn.ubharajaya.ac.id
Editorial Address
Universitas Bhayangkara Jakarta Raya Kampus II: Jalan Raya Perjuangan No. 81, Bekasi Utara, Kota Bekasi 17121, Indonesia
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Bhara Petro Energi
ISSN : 28285530     EISSN : 28283457     DOI : https://doi.org/10.31599/bpe.v1i2
Journal of Bhara Petro Energi (BPE) is a scientific journal managed and published by the Department of Petroleum Engineering, Faculty of Engineering, Bhayangkara University, Greater Jakarta. The focus of this journal is all about the upstream and downstream oil and gas industry as well as the geothermal industry. This journal focuses on production technology, drilling technology, petrophysics, reservoir studies and EOR (enhanced oil recovery) studies. Downstream Technology focuses on oil processing, managing surface equipment, and economic forecasting. BPE will be issued 3 (three) times a year, in March, July and December. First published in March 2022 with ISSN 2828-3457 (Online Media), and ISSN 2828-5530 (print media).
Articles 6 Documents
Search results for , issue "Vol 1 No 2: July 2022" : 6 Documents clear
Analisa Dan Optimasi Produksi Sumur Migas Di PEP Bekasi Hernowo Widodo; M Samsuri; Samsul Ma’rif
JURNAL BHARA PETRO ENERGI Vol 1 No 2: July 2022
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (416.913 KB) | DOI: 10.31599/bpe.v1i2.1310

Abstract

Abstract Based on the results of the mass balance analysis and a review at PEP, it was concluded that the total feed intake from all wells was BOPD at 770 barrels/day, gas at 12.1882 MMSCFD, and BLPD at 15975.2 barrels/day, the total product produced was 8 ,541226% oil at 1568.760 barrels/day, 8.989134% condensate at 1651.027 barrels/day, 0.056535% gas at 10.3838214 MMSCFD, and 82.4131% water injection at 15136.748 barrels/day . In the Water Injection Plant process it produces sludge of 16286.812 kg or 0.90001% of the processed formation water, the formation of sludge is due to the addition of chemicals in the formation water treatment process. Keywords: Mass balance, crude oil, gas  Abstrak            Berdasarkan hasil analisis neraca massa dan peninjauan di PEP didapatkan  antara lain total feed masuk dari seluruh sumur adalah BOPD sebesar 770 barrel/hari, gas sebesar 12,1882 MMSCFD, dan BLPD sebesar 15975,2 barrel/hari, total produk yang dihasilkan adalah 8,541226% minyak sebesar 1568,760 barrel/hari, 8,989134% condensat sebesar 1651,027 barrel/hari, 0,056535% gas sebesar 10,3838214 MMSCFD, dan 82,4131% air injeksi sebesar 15136,748 barrel/hari. Pada proses Water Injection Plant menghasilkan sludge sebesar 16286,812 kg atau 0,90001 % dari air formasi yang diolah, terbentuknya sludge dikarenakan adanya penambahan bahan kimia pada proses pengolahan air formasi. Kata kunci: Neraca massa, minyak mentah, gas. Reference: Patton. 1981. Oilfield Water System. Campbell Petroleum Series, Norman, OK: John M. Campbell. Faust, S.D.dan O.M. Aly. (1998). Chemistry of Water Treatment. Lewis Publisher. USA. Hendricks, David W. 2006. Water Treatment Unit Process: Physical and Chemical. CRC Press. Florida. Howe, J. K., et al. (2012). Principle of Water Treatment. John Wiley and Sons, Inc. New Jersey. Kemmer, EN. 1979. Water; The Universal Solvent, 2nd ed. Oak Brook, IL: Nalco Chemical Co. Subarnas, Nandang. 2007. Terampil Berkreasi. Jakarta: Grafindo Media Pratama. Manurung, Tambak, dkk. 2012. Efektivitas Biji Kelor (Moringa oleifera) Pada Pengolahan Air Sumur Tercemar Limbah Domestik. Dalam Jurnal Ilmiah Fakultas Teknik LIMIT’s. Vol 8, No.1: 37-41. Sutresna, Nana. 2007. Cerdas Belajar Kimia untuk Kelas XI SMA. Jakarta: Grafindo Media Pratama. Website Official Pertamina, http://www.pertamina.com
Analisa Efisiensi Energi pada Proses Produksi Obat X di Perusahaan YZ M Samsuri; Hernowo Widodo; Ananda Siti Choirunnisa
JURNAL BHARA PETRO ENERGI Vol 1 No 2: July 2022
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (446.933 KB) | DOI: 10.31599/bpe.v1i2.1432

Abstract

ABSTRACT Drugs are chemicals that are produced to reduce pain and prevent the risk of various diseases. In the manufacture of drugs, several stages of the process are needed which are quite long and require calculations from each process to produce products that meet the requirements and minimize errors during the process that can cause company losses. The research was carried out by direct observation during the process as well as collecting data on the mass of materials before and after the process, as well as critical parameters listed from the PPI (Main Processing Procedure) book for 1 batch of drug manufacture which takes more than 24 hours to manufacture. From observations, it is known that the drug manufacturing process has an adiabatic process where the resulting mass balance has the equation mass in = mass out and there is no chemical reaction that takes place. In the drying process, the heat balance can be calculated because this process produces heat which requires a certain amount of energy in the process. The drying machine used is an FBD (Fluidized Bed Dryer) machine which requires a certain amount of power so that the efficiency of this machine can be known to maximize the process. Keywords: Drug, FBD, Mass Balance, Heat Balance, Process ABSTRAK Obat merupakan suatu bahan kimia yang diproduksi untuk mengurangi rasa sakit dan mencegah timbulnya risiko berbagai penyakit. Pada pembuatan obat, diperlukan beberapa tahapan proses yang cukup panjang serta membutuhkan perhitungan dari setiap prosesnya untuk menghasilkan produk yang sesuai persyaratan dan meminimalisir kesalahan saat proses yang dapat menyebabkan kerugian perusahaan. Penelitian dilakukan dengan metode pengamatan langsung saat proses berlangsung serta pengumpulan data massa bahan sebelum dan sesudah proses, juga parameter kritis yang tercantum dari buku PPI (Prosedur Pengolahan Induk) untuk 1 batch pembuatan obat dimana pada pembuatannya membutuhkan waktu lebih dari 24 jam. Dari pengamatan, diketahui bahwa pada proses pembuatan obat memiliki proses adiabatik dimana neraca massa yang dihasilkan memiliki persamaan massa masuk = massa keluar dan tidak adanya reaksi kimia yang berlangsung. Pada proses pengeringan, neraca panas dapat dihitung karena pada proses ini menghasilkan panas yang membutuhkan sejumlah energi pada prosesnya. Mesin pengering yang digunakan adalah mesin FBD (Fluidized Bed Dryer) yang membutuhkan sejumlah daya sehingga dapat diketahui efesiensi mesin ini untuk memaksimalkan proses. Kata Kunci : Obat, FBD, Neraca Massa, Neraca Panas, Proses Reference: Anief M., 2000. Ilmu Meracik Obat Teori dan Praktek,.UGM Press,.Yogyakarta. Anief, M., 1991. Apa Yang Perlu Diketahui Tentang Obat. Gadjah Mada University Press. Yogyakarta. Ansel, H.C., 1989. Pengantar Bentuk Sediaan Farmasi. diterjemahkan oleh Farida Ibrahim, Asmanizar, Iis Aisyah, Edisi keempat, 255-271, 607-608, 700, Jakarta, UI Press. Badan Pengawasan Obat dan Makanan, 2001. Pedoman Cara Pembuatan Obat yang Baik, Jakarta. Holman, J.P., 1994. Perpindahan Kalor. Erlangga. Jakarta Jas, A., 2007. Perihal Resep & Kern, D. Q.1965.Process Heat Transfer. New York: McGraw-Hill Book Company. Hermawan, Lutfi.2020.Laporan Kerja Praktek PT Kalbe Farma.Universitas Muhammadiyah Jakarta.Jakarta Howell John R and Buckius Richard O. 1987. Fundamentals of Engineering Thermodynamics. New York: McGraw-H Indriani, Irma.dkk.2009.Pembuatan Fluidized Bed Dryer Pengeringan Benih Pertaniann Secara Resmi Semi Batch.Universitas Sebelas Maret.Surakarta Perry, R.H and Green, D.W.. 1999. Perry’s Chemical Engineer’s Handbook. 7thed.. Mc Graw-Hill Book Company. New York. Pediatric Dosage Handbook (Including Neonatal Dosing, Drug Administration, & Extemporer Preparation), Lexi-Comp, 2007. Tjay, Tan Hoan dan Rahardja, Kirana, Obat-Obat Penting, Edisi keenam. Elex Media Komputindo, Jakarta. Universitas Sumatera Utara Press, 1-1
Dry Lab – Laboratorium Virtual Untuk Anlisa Rekayasa Lumpur Pemboran M. Mahlil Nasution; Edy Soesanto
JURNAL BHARA PETRO ENERGI Vol 1 No 2: July 2022
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (601.493 KB) | DOI: 10.31599/bpe.v1i2.1433

Abstract

Abstract Dry Lab is a virtual laboratory design. We called also as a laboratory of the future. Dry Lab was designed because of the increasingly advanced computerized especially Artificial Intelligence for making a simulator that can function to simulate a tool wich is can similiar with the real condition so that it gets the same results as when run in a conventional laboratory. With the existence of this Simulator technology, then I try to make a virtual simulator for drilling mud analysis which is very much needed in the world of oil engineering education especially and also needed in the world of oil and gas industry, especially when conducting drilling activities. Keywords: Dry Lab, Artificial Intelligence, virtual simulator, drilling mud. Abstrak Dry Lab adalah suatu rancangan virtual laboratorium. Dapat juga dikatakan sebagai Laboratorium masa depan. Dry Lab dirancang karena semakin majunya ilmu komputerisasi Artificial intelligence dalam membuat suatu simulator yang dapat berfungsi mensimulasikan suatu alat sesuai dengan cara kerja aslinya sehingga mendapatkan hasil yang sama seperti saat dijalankan di Laboratorium konvensional.Dengan adanya teknologi Simulator ini, maka saya mencoba membuat suatu simulator virtual untuk analisa lumpur pemboran yang sangat dibutuhkan dalam dunia pendidikan Teknik perminyakan khususnya dan juga dibutuhkan di dalam dunia industri Migas terutama saat melakukan kegiatan pemboran. Kata kunci: Dry Lab, Artificial intelligence, simulator virtual, lumpur pemboran. Reference: Agusman, A. R., Rasyid, A., & Lesmana, D. L. (2022). Evaluasi Water Shut Off Dan Membuka Lapisan Baru Sumur Bagong Di Lapangan Lesma. JURNAL BHARA PETRO ENERGI, 38-43. Aly Rasyid, A. R. (2021). Seleksi Material Untuk Casing Sumur Migas & Geothermal–Buku Referensi. Composition and Properties of Drilling and Completion Fluids: Seventh Edition, Caenn, RyenDarley, H. C.H. and Gray, George R. (2016) Composion And Properties Of Drilling And Complition Fluids,  H.C.H Darley and George R. Gray J.T. Patton (New Mexico State U.) P.F. Phelan (Los Alamos Natl Laboratory), Well Damage Hazards Associated With Conventional Completion Fluids Khodja, M., Khodja-Saber, M., Canselier, J. P., Cohaut, N. and Bergaya, F. (2010) ‘Drilling fluid technology: performances and environmental considerations’, Product and Services, From R&D to final solutions, pp. 227-232. Available at: http://cdn.intechopen.com/pdfs-wm/12330.pdf Nasution, M. M., Rasyid, A., & Pahrudin, G. (2022). Desain Formulasi Lumpur Untuk Pemboran Panas Bumi Di Sumur GG-01. JURNAL BHARA PETRO ENERGI, 11-18. Rasyid, A., Mardiana, R. Y., Budiono, K., & Noviasta, B. (2021, December). Drilling optimization in geothermal exploration wells using enhanced design of conical diamond element bit. In Asia Pacific Unconventional Resources Technology Conference, Virtual, 16–18 November 2021 (pp. 1795-1808). Unconventional Resources Technology Conference (URTeC). Rasyid, A., Soesanto, E., & Nababan, E. N. (2022). Evaluasi dan Optimasi Desain Casing Sumur Pemboran dengan Metode Maximum Load di Sumur ENN-1 di Lapangan Batuwangi. JURNAL BHARA PETRO ENERGI, 1-10. Rasyid, A. (2019). Pemanfaatan Wellbore Strengthening Agent Selama Pengeboran di Onshore Sumatera Bagian Utara Indonesia. Jurnal Jaring SainTek, 1(2). Rudi Rubiandini R.S, Buku Teknik Pemboran Volume 1, Bandung, 2015 Virtual and Physical Experimentation in Inquiry-Based Science Labs: Attitudes, Performance  and Access.Journal of Science Education and TechnologyPyatt, Kevin.,Sims, Rod, 2012 Virtual laboratories in engineering education: the simulation lab and remote labComputer Applications in Engineering Education.Balamuralithara, B. Woods, P. C. 2009 Agusman, A. R., Rasyid, A., & Lesmana, D. L. (2022). Evaluasi Water Shut Off Dan Membuka Lapisan Baru Sumur Bagong Di Lapangan Lesma. JURNAL BHARA PETRO ENERGI, 38-43.    
Identifikasi Lapisan Batubara Pada Batuan Sedimen Pre-Tersier Menggunakan Metode Wireline Logging Untuk Potensi Coalbed Methane (CBM) Pada Sumur AB Lapangan X Eko Prastio; Abdullah Rizky Agusman; Nur Fikriyah Mutmainah
JURNAL BHARA PETRO ENERGI Vol 1 No 2: July 2022
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (379.638 KB) | DOI: 10.31599/bpe.v1i2.1434

Abstract

Abstract Wireline Logging is the activity of collecting and recording data on physical parameters according to the depth of the borehole during the drilling process. The measured data are radioactivity, speed of sound and electromagnetic. Methane gas trapped in coal or commonly referred to as Coalbed Methane is one of the alternative energy sources where the existing conventional gas has decreased production and no other new gas fields have been found. The Muara Enim Formation, which is the main target of mining companies, contains abundant brown coal or lignite from the South Sumatra region. The existing log data will be interpreted and evaluated qualitatively and identified the presence of the coal seam using wireline logging. Coalbed methane or CBM is an alternative energy source that can be utilized. The gas trapped in the coal seam will be utilized, because this research will identify the coal seam by using a wireline logging tool in well AB field X. Through the interpretation of logging results using gamma ray log data and density log data from several zones in the same location . Gamma ray log data and density logs will detect coal seams because there is a radioactive element in the coal, namely potassium. With a low gamma ray log value and a low density log value, it will be possible to have a coal seam in well AB field X. Keywords: Coal, CBM, Wireline Logging Abstrak Wireline Logging adalah kegiatan pengumpulan dan perekaman data parameter-parameter fisika sesuai kedalaman dari lubang bor selama proses pengeboran berlangsung. Data yang diukur adalah radioaktivitas, kecepatan suara dan elektromagnetik.Gas metan yang terjebak di dalam batubara atau biasa disebut dengan Coalbed Methane merupakan salah sau energy alternative yang dimana gas konvensional yang ada mengalami penurunan produksi dan belum ditemukan lapangan-lapangan gas baru lain nya. Formasi Muara Enim yang menjadi target utama dari perusahaan tambang yang didalamnnya terdapat batubara coklat atau lignit yang melimpah dari wilayah Sumatera Selatan. Data Log yang ada akan diinterpretasikan dan di evaluasi secara kualitatif dan di identifikasi keberadaan lapisan batubra dengan menggunakan wireline logging. Gas yang terjebak didalam lapisan batubara akan dimanfaatkan, karena hal itu penelitian ini akan mengidentifikasi lapisan batubara dengan menggunakan alat wireline logging pada sumur AB lapangan X. Melalui interpretasi hasil logging dengan menggunakan data log gamma ray dan data log density dari beberapa zona di lokasi yang sama. Data log gamma ray dan log density akan mendeteksi lapisan batubara karena didalam bautbara terdapat unsur zat radioaktif yaitu kalium. Dengan nilai log gamma ray yang rendah dan nilai log density yang rendah akan memungkinkan ada nya lapisan batubara didalam sumur AB lapangan X. Kata Kunci : Batubara, CBM, Wireline Logging Reference: Baker Huges, INTEQ. (1995). Drilling Engineering Workbook. Baker Huges INTEQ. Houston United State of America. Bateman, R. M. (2015). Cased-Hole Log Analysis and Reservoir Performance Monitoring. United States of America. Bradley, H. B. (1992). Petroleum Engineering Handbook. Society of Petroleum Engineers. Richardson, Texas, United States of America. Herron, S., Herron, M. (1996).  Quantitative lithology: an application for open and cased hole spectroscopy. Transactions of the SPWLA 37th Annual Symposium, New Orleans, LA. Horsrud P. 2001. Estimating mechanical properties of shale empirical correlations. SPE Drilling Completion 16: 68-73. Harsono, A. 1997. Evaluasi formasi dan aplikasi log. Schlumberger Oilfield Services, Jakarta Liu, G. (2021). “Applied Well Cementing Engineering”. Pegasus Vertex, Rasyid, Aly, and Tyastuti Sri Lestari. "Penentuan Produktivitas Zona Minyak Dengan Menggunakan Modular Formation Dynamic Technology." Jurnal Kajian Ilmiah 18.1 (2018). Salinita, S. dan Bahtiar, A. (2014). Pengaruh struktur geologi terhadap kualitas batubara lapisan “D” formasi Muara Enim, Jurnal Teknologi Mineral dan Batubara, Vol.10, No.2, hal. 91–104.
Evaluasi Stimulasi Hydraulic Fracturing Dan Analisa Produktivitas Sumur Pada Formasi Sandstone Sumur ”MG-09” Lapangan ”FI” Aly Rasyid; Nugroho Marsiyanto; M Gilang Farhana Irsyad
JURNAL BHARA PETRO ENERGI Vol 1 No 2: July 2022
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (226.234 KB) | DOI: 10.31599/bpe.v1i2.1435

Abstract

Abstract Hydraulic fracturing is a stimulation method by injecting treatment fluid to fracture a formation by using proppant (sand) as a fracture buffer media which aims to improve the production rate in the well. Fracture geometry evaluation is done to get the right fracture geometry value. In the production evaluation, using the Howard and Fast method, the Kavg value in the MG-09 well was 39.4094 mD. Based on the actual production rate after hydraulic fracturing in well MG-09 there was an increase in the total flow rate from 65 BLPD to 182 BLPD. Based on the calculation of the increase in Productivity Index, the Prats method obtained an increase in PI of 2.63 times, while the CSD method (Cinco-ley, Samaniego and Dominique) obtained a multiple of the increase in productivity (K2P) or an increase in PI of 2.63 times and the skin factor of +12 to -4.8 Based on the comparison of the three-phase IPR curve of the Pudjo-Sukarno method, where at the same Pwf of 400 psi there was an increase in oil production from 45 BOPD to 134 BOPD. Therefore, the results of the hydraulic faracturing evaluation of the MG-09 well in terms of the work process (proppant, fracturing fluid), production analysis (permeability, productivity index, increased productivity index of the prats and CSD methods, level of skin repair and IPR curve analysis) were declared successful. Keywords: Hydraulic fracturing, fluida treatment, Productivity Index, IPR tiga fasa. Abstrak Hydraulic fracturing (perekahan hidrolik) adalah suatu metode stimulasi dengan menginjeksikan fluida treatment untuk merekahkan suatu formasi dengan menggunakan proppant (pasir) sebagai media pengganjal rekahan yang bertujuan untuk meningkatkan laju produksi pada sumur. Evaluasi geometri rekahan dilakukan untuk mendapatkan nilai geometri rekahan yang tepat. Pada evaluasi produksi, dengan metode Howard dan Fast diperoleh nilai Kavg pada sumur MG-09 sebesar 39,4094 mD. Berdasarkan laju produksi aktual setelah dilakukan Hydraulic Fracturing pada sumur MG-09 terjadi peningkatan laju aliran total dari 65 BLPD menjadi 182 BLPD. Berdasarkan kalkulasi penghitungan Productivity Index, dengan metode Prats diperoleh peningkatan PI sebesar 2,63 kali, sedangkan dengan metode CSD (Cinco-ley, Samaniego dan Dominique) diperoleh angka kenaikan produktivitas (K2P) atau peningkatan PI sebesar 2,63 kali dan faktor skin dari +12 menjadi -4,8 Berdasarkan perbandingan kurva IPR tiga fasa metode Pudjo-Sukarno, dimana pada Pwf yang sama 400 psi terjadi peningkatan produksi minyak dari 45 BOPD menjadi sebesar 134 BOPD. Sehingga hasil evaluasi hydraulic faracturing pada sumur MG-09 dari segi proses kerja (proppant, fluida perekah), analisa produksi (permeabilitas, productivity index, peningkatan indeks produktifitas metode prats dan CSD, tingkat perbaikan skin dan analisis kurva IPR) dinyatakan berhasil. Kata kunci: Hydraulic fracturing, fluida treatment, Productivity Index, IPR tiga fasa. Reference: Agusman, Abdullah Rizky, Aly Rasyid, and Dika Latief Lesmana. "Evaluasi Water Shut Off Dan Membuka Lapisan Baru Sumur Bagong Di Lapangan Lesma." JURNAL BHARA PETRO ENERGI (2022): 38-43. Allen, Thomas O., Roberts, Alan P. 1989. “Production Operation 2: Well Completion, Workover and Stimulation”. Tulsa, Oklahoma: Oil & Gas Consultants Int. Inc. Carbolite Data Sheet Product Information. CARBO Ceramics, 2006. “Rencana Kerja Tahun 2014. Fungsi T. Produksi Asset 3”, PT. Bukitapit Bumi Persada. Economides, Michael J., Kenneth G. Nolte. “Reservoir Stimulation”, Houston, Texas: Energy Tribune Publishing Inc. Economides, Michael J., Martin, T. 2007. “Modern Fracturing, Enhancing Natural Gas Production”. Houston, Texas: Energy Tribune Publishing Inc. Montgomery, Carl. (2013). Fracturing fluids chapter I. Australia: NSI technology, Tulisa, Okhlama, USA. Rasyid, A., Nasution, M. M., Soesanto, E., & Afindera, H. (2021). Penentuan Zona Prospek Pada Kerja Ulang Pindah Lapisan Dengan Analisis Log Pada Lapangan X Sumur T. Jurnal Kajian Ilmiah, 21(3), 307-316. Rasyid, A., & Lestari, T. S. (2018). Penentuan Produktivitas Zona Minyak Dengan Menggunakan Modular Formation Dynamic Technology. Jurnal Kajian Ilmiah, 18(1).  
Perencanaan Desain Offshore Kontruksi Bawah Laut menggunakan Pengolahan Data Pemodelan Geofisika dengan Program Simulasi 3D Surfer Edy Soesanto; Aly Rasyid; Hadi Suyanto
JURNAL BHARA PETRO ENERGI Vol 1 No 2: July 2022
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (616.339 KB) | DOI: 10.31599/bpe.v1i2.1447

Abstract

Abstract Underwater construction design planning is increasingly being developed as a 3D modeling simulation, because 3D simulation is expected to be able to make the initial plan for making a design framework. Surfer is one of the software that was created for the purpose of making contour maps and three-dimensional modeling based on existing grids and simplifying and accelerating data conversion activities into the form of contour maps and surface plots. One of the applications is Surfer in the field of Underwater Technology development is 3D modeling simulation and bathymetric contour map making, sediment layer modeling using SBP data and making current stick plots to determine circulation and current velocity and direction. In addition, Surfer can also display maps in 2D or 3D. on this occasion Surfer 16 software will be used to process marine acoustic data with X (Easting) data, Y (Northing) data and six Z layer depths, namely Z1-Z6, the data is processed in one step to make 2D and 3D models which are then will be interpreted as a simulation material for the initial planning of the underwater construction design. Keywords: design, offshore, construction, underwater, surfer Abstrak Perencanaan desain kontruksi bawah laut semakain banyak dikembangkan sebagai simulasi pemodelan 3D, karena simulasi 3D diharapkan dapat menjadikan rencana awal pembuatan kerangka desain. Surfer adalah salah satu dari perangkat lunak yang diciptakan untuk kegunaan pembuatan peta kontur dan pemodelan tiga dimensi yang berdasarkan grid yang ada dan mempermudah serta mempercepat akvitas konversi data ke dalam bentuk peta kontur dan plot permukaan. Salah satu aplikasi adalah Surfer dalam bidang pengembangan Teknologi Bawah laut adalah simulasi pemodelan 3D dan pembuatan peta kontur batimetri, pemodelan lapisan sedimen melalui data SBP dan pembuatan stick plot arus untuk mengetahui sirkulasi dan kecepatan dan arah arus. Selain itu, Surfer juga dapat menampilkan peta secara 2D ataupun 3D. pada kesempatan ini software Surfer 16 yang akan digunakan unutk mengolah data akustik kelautan dengan data X (Easting) ,data Y (Northing) dan enam kedalaman lapisan Z yaitu Z1-Z6, data tersebut diproses dengan sebuah tahapan untuk menjadikan model 2D dan 3D yang selanjutnya akan di interpretasi sebagai bahan simulasi perencanaan awal desain kontruksi bawah laut. Kata kunci: desain, offshore, kuntruksi, bawah laut, surfer Reference: Septina Anggiani. Pengolahan data oseanografi dengan surfer 10.0 dan odv 4.0 Surya, Yohanes Sam. 2008. Surfer8.http://www.gis4u.net [26 November2013] International Hydrographic Organization (IHO) Standard for Hydrographic Surveys, Special Publication No.44 (SP.44), 5th Edition, February 2008 Alba, J. L. and Audibert, J. M. E. (1999). “Pile design in calcareous and carbonaceous granular materials: a historical overview”, Second International Conference Engineering on for Calcareous Sediments, Bahrain American Petroleum Institute (2000). “Recommended practice for planning, designing, and constructing fixed offshore platforms-working stress design”, API Recommended Practice 2A-WSD (RP 2A-WSD), (21’‘ ed.). API, Washington, D.C Anderson, D. G. and Stokoe, K. H. (1978). “Shear modulus: a time-dependent soil property”, Dynamic Geotechnical Testing, ASTM STP 654, American Society for Testing and Materials, pp. 66-90. Angemeer, J., Carlson, E. D., and Klick, J. H. (1973). “Techniques and results of offshore pile load testing in calcareous soils”, Proceedings, Ffth Offshore Technology Conference, Houston, Vol. 2, pp. 677-692 Bogard, J. D. and Matlock, H. (1990). “Application of model pile tests to axial pile design”, Proceedings, Twenty-Second Annual Offshore Technology Conference, Houston, Paper No. 6376 Coyle, H. M. and Gibson, G. C. (1970). “Empirical damping constants for sands and clays”. Journal, Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM3, pp. 949-965. Cox, W. R. and Reese, L. C. (1976). “Pullout tests of grouted piles in stiff”, Proceedings, Eighth Offshore Technology Conference, OTC 2473, Houston, Vol. 2, pp. 539-55 1 Datta, M., Gulhati, S. K., and Rao, G. V. (1980). “An appraisal of the existing practice of determining the axial load capacity of deep penetration piles in calcareous sands”, Proceedings, Twelfth Offshore Technology Conference, Houston, Vol. 4, pp. 1 19-1 30

Page 1 of 1 | Total Record : 6