cover
Contact Name
Lia Yunita
Contact Email
yunitalia@up45.ac.id
Phone
+6285292958275
Journal Mail Official
joffshore.up45@gmail.com
Editorial Address
Soekarno Building, 2nd Floor, Jl. Proklamasi No. 1, Babarsari, Yogyakarta (55281)
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Offshore: Oil, Production Facilities, and Renewable Energy
ISSN : -     EISSN : 25498681     DOI : 10.30588
Jurnal Offshore: Oil, Production Facilities and Renewable Energy is a blind peer-reviewed National Journal in Indonesia and English languages published two issues per year (in June and December). Jurnal Offshore: Oil, Production Facilities, and Renewable Energy focus on providing a publishing platform for scientists and academicians to promote, share, publish and discuss to all aspects of the latest outstanding development in the field of Petroleum Engineering. It encompasses the engineering of oil, production facilities and renewable energy, but it is not limited to scopes. Those are allowed to discuss on the following scope: Oil : geology geophysic in petroleum, reservoir, driliing and production in petroleum. Production Facilities : pipe transportation, separator, flowline, manifold. Renewable energy : geologist, geophysic in geothermal, pirolisis. Software Simulation in Petroleum and Geothermal : CMG, PIPESIM, MFrac, Petrasim, Aspen.
Articles 67 Documents
Analisis PASTEL & SWOTPemanfaatan Teknologi Pumped Storage Hydropower Untuk Meningkatan Penetrasi Energi Terbarukan Di Indonesia Mujammil Asdhiyoga Rahmanta
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 6, No 1 (2022): Jurnal Offshore: Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (390.652 KB) | DOI: 10.30588/jo.v6i1.1012

Abstract

Renewable energy (RE) power plants can reduce the use of fossil fuel power plants that damage the environment related to CO2 emissions. Solar power centers and wind/wind power plants (PLTB) have intermittent characteristics related to their performance which is strongly influenced by environmental conditions such as fluctuations in solar radiation & wind speed. This creates problems in the stability & reliability of the electricity system so that its utilization is not optimal. Pumped storage hydropower (PSH) is a renewable energy-based technology that can store excess energy production in the electricity system at low load conditions to be distributed when the system is in peak load conditions. This study aims to determine the use of PSH concerning increasing the penetration of RE generators in the electricity system. Pastel & SWOT (Strength Weakness Opportunity Threat) analysis methods were used in this study. From the results of the discussion & discussion, it was found that PSH technology can support the penetration of RE power plants in Indonesia, especially PLTB & PLTS because it can eliminate the intermittency nature of these plants in the electricity system. In addition, PSH is also a mature energy storage medium on a large & economical scale, making it suitable for application in large & complex electrical systems. The strength of PSH is its mature technology, especially from the aspect of its large and economical capacity. The weakness of PSH is related to its utilization depending on the location due to the need for the area to have sufficient water potential with hilly natural conditions (their elevation), and relatively large land. The opportunity offered by PSH is that Indonesia has many areas that have the potential to be developed into PSH. In addition, the use of PSH can reduce the cost of production and increase the penetration of PLTS & PLTB. The threat of PSH is the trend of decreasing storage costs & increasing battery performance.
Pemanfaatan Sludge Limbah Biodigester untuk Meningkatkan Kecepatan Produksi Biogas dan Konsentrasi Gas Metan dalam Biogas Heni Dwi Kurniasari
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 2, No 2 (2018): Jurnal Offshore : Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (410.472 KB) | DOI: 10.30588/jo.v2i2.404

Abstract

Sludge hasil samping pengolahan kotoran sapi menjadi biogas masih mengandung bahan pencemar seperti E. coli, oleh karena itu apabila sludge dibuang langsung ke lingkungan akan menyebabkan pencemaran air, tanah, dan udara. Selama ini sludge hanya dimanfaatkan sebagai pupuk, padahal dalam sludge dimungkinkan masih mengandung mikroorganisme yang dapat mempercepat proses pembentukan biogas. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan sludge biodigester dalam pembentukan biogas dan mengetahui perbandingan optimal komposisi limbah kotoran sapi dengan sludge biodigester sebagai rekomendasi dalam percepatan proses pembentukan biogas. Sludge biodigester merupakan limbah biogas setelah mengalami pengeraman selama 14 hari. Dalam penelitian ini digunakan 3 macam digester dengan variasi komposisi yaitu digester-1 tanpa penambahan sludge biodigester, digester-2 dengan penambahan sludge biodigester sebesar 25%, digester-3 dengan penambahan sludge biodigester sebesar 50%. Volume digester sebesar 30 liter dan waktu pengeraman 14 hari. Parameter pendukung yang diuji meliputi: Volatile Solid (VS), dry content, kadar abu, temperatur, pH isian, komposisi gas. Hasil penelitian menunjukkan bahwa jumlah biogas yang cenderung lebih baik dihasilkan oleh digester-2 dengan bahan campuran 75 % kotoran sapi dan 25 % sludge biodigester. Digester-2 memiliki kadar VS rata-rata 4,62 %, kadar abu 1,82 %, dry content 93,56 %, dengan volume total biogas sebesar 33,4 liter dan kandungan metana rata-rata sebesar 12,19 %. Secara keseluruhan biogas terbentuk pada umur isian 3 hari, dengan rentang suhu 26 °C–30 °C dan pH 6,82–7,44. Penelitian ini memperlihatkan bahwa dengan adanya penambahan sludge biodigester (return sludge) mampu memberikan pengaruh yang lebih baik terhadap produksi biogas jika dibandingkan tanpa adanya penambahan sludge biodigester.Sludge byproduct of processing cow dung into biogas still contains pollutants such as E. coli, therefore if sludge is discharged directly into the environment it will cause water, soil and air pollution. So far, sludge is only used as fertilizer, whereas in sludge it is possible to still contain microorganisms that can accelerate the process of biogas formation. This study aims to determine the effect of the addition of biodigester sludge in the formation of biogas and determine the optimal comparison of the composition of cow manure with biodigester sludge as a recommendation in accelerating the process of biogas formation. Sludge biodigester is a biogas waste after experiencing incubation for 14 days. In this study used 3 kinds of digesters with variations in composition, namely digester-1 without the addition of biodigester sludge, digester-2 with the addition of biodigester sludge by 25 %, digester-3 with the addition of biodigester sludge by 50 %. The digester volume is 30 liters and the incubation time is 14 days. Supporting parameters tested include: Volatile Solid (VS), dry content, ash content, temperature, pH filled, gas composition. The results showed that the amount of biogas that tends to be better produced by digester-2 with a mixture of 75 % cow dung and 25 % sludge biodigester. Digester-2 has an average VS content of 4.62 %, ash content of 1.82 %, dry content of 93.56 %, with a total biogas volume of 33.4 liters and an average methane content of 12.19 %. Overall biogas is formed at the age of 3 days, with a temperature range of 26 °C-30 °C and a pH of 6.82-7.44. This research shows that the addition of biodigester sludge (return sludge) can provide a better effect on biogas production when compared without the addition of biodigester sludge.
Potensi Pembangkit Listrik Tenaga Surya Rooftop di Gedung Mohammad Hatta, Universitas Proklamasi 45 Andri Prasetyo Nugroho; Daniel Kurniawan
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 5, No 1 (2021): Jurnal Offshore: Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (715.122 KB) | DOI: 10.30588/jo.v5i1.935

Abstract

AbstrakBerdasarkan Peraturan Presiden Republik Indonesia nomor 22 tahun 2017 tentang Rencana Umum Energi Nasional (RUEN), pengembangan tenaga surya sebagai energi listrik diproyeksikan mencapai 6,5 GW pada tahun 2025 dan 45 GW pada tahun 2050 setara dengan 22% dari total potensi tenaga surya yakni sebesar 207,9 GW. Proyeksi Pembangkit Listrik Tenaga Surya (PLTS) cukup optimis untuk diimplementasikan mengingat tren investasi dan harga listrik dari PLTS global semakin terjangkau. Universitas Proklamasi 45 berkomitmen untuk mengaplikasikan PLTS secara mandiri. Salah satu upaya yang dilakukan adalah dengan memanfaatkan atap bangunan sebagai lahan PLTS terinterkoneksi yang sering disebut PLTS rooftop on-grid atau grid-connected. Tujuan penelitian ini adalah untuk menghitung potensi energi listrik dan kontribusi dalam penurunan emisi CO2 dari PLTS rooftop di Gedung Muhammad Hatta, Universitas Proklamasi 45. Metode yang digunakan pada penelitian ini adalah metode simulasi sistem dengan software PVsyst. Berdasarkan hasil simulasi sistem, potensi energi listrik yang dihasilkan oleh PLTS rooftop grid-connected setiap tahunnya terhitung sebesar 31.172 kWh atau 31,172 MWh, dengan rincian per kWp-nya adalah 1528 kWh/kWp/tahun. Selanjutnya, kontribusi penurunan emisi CO2 dari implementasi PLTS dengan produksi energi listrik sebesar 31,17 MWh/tahun selama 30 tahun adalah 576,3 tCO2 atau setara dengan 83,96% dari total emisi CO2 pada pembangkit listrik lainnya.Kata kunci: PLTS rooftop, Universitas Proklamasi 45, grid-connected, simulasi sistem, emisi CO2  AbstractBased on the Presidential Regulation of the Republic of Indonesia number 22 of 2017 concerning the General National Energy Plan, the development of solar power as electrical energy is projected to reach 6,5 GW in 2025 and 45 GW in 2050, equivalent to 22% of the total solar power potential of 207,9 GW. Projections of Solar Power Plants are quite optimistic to be implemented considering the investment trend and the price of electricity from the global solar power plants is increasingly affordable. Universitas Proklamasi 45 is committed to applying solar power plants independently. One of the efforts made is to use the roof of the building as an interconnected solar power plant which is often called rooftop solar power plant on-grid or grid-connected. The purpose of this study was to calculate the potential for electrical energy and its contribution to reducing CO2 emissions from rooftop solar power plants at Muhammad Hatta Building, Universitas Proklamasi 45. The method used in this study is a system simulation method with PVsyst software. Based on the results of the system simulation, the potential for electrical energy generated by rooftop grid-connected solar power plant each year is 31172 kWh or 31,172 MWh, with details per kWp of 1528 kWh/kWp/year. Furthermore, the contribution of reducing CO2 emissions from the implementation of solar power plants with electricity production of 31,17 MWh/year for 30 years is 576,3 tCO2 or equivalent to 83,96% of the total CO2 emissions in other power plants.Keywords: rooftop solar power plants, Universitas Proklamasi 45, grid-connected, system simulation, CO2 emissions
Rencana Pengembangan Lapangan Gas Metana Batubara Dangkal (Shallow CBM) di Daerah Ida Manggala, Rantau, Kabupaten Hulu Sungai Selatan Kalimantan Selatan Basuki Rahmad; Sugeng Raharjo; Eko Widi Pramudiohadi; Ediyanto Ediyanto
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 2, No 1 (2018): Jurnal Offshore : Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1058.585 KB) | DOI: 10.30588/jo.v2i1.351

Abstract

Potensi kandungan gas batubara (Gas Content) Idamanggala, Rantau, Kalimantan Selatan berkisar 6,72 m3/ton. Sumberdaya gas batubara (Gas in Place/GIP) Rantau, Kalimantan Selatan 0,002 tcf (saturasi gas 90%), kisaran kedalaman 50-150 meter. Gas Metana Batubara (GMB) diproduksi dengan cara terlebih dahulu merekayasa batubara sebagai reservoir agar diperoleh cukup ruang sebagai jalan keluarnya gas metana. Proses rekayasa diawali dengan memproduksi air (dewatering) agar terjadi perubahan keseimbangan mekanika. Setelah tekanan turun, gas batubara akan keluar dari matrik batubara. Gas metana kemudian mengalir melalui rekahan batubara dan akhirnya keluar menuju lubang sumur. Puncak produksi Gas Metana Batubara (GMB) bervariasi antara dua minggu sampai dengan tiga tahun. Rencana pengembangan lapangan dimulai dari tiga tahun pertama dengan melakukan lima sumur pilot (pilot well). Pemboran pilot dilakukan untuk mengenal dimensi seam dan kualitasnya, baik secara lateral maupun vertikal. Apabila regulasi pemerintah sesuai  dan memungkinkan untuk memulai pengembangan, maka pengembangan sumur produksi dapat dimulai pada tahun 2021. Pengembangan Lapangan Gas Batubara Daerah Rantau Kalimantan Selatan diprioritaskan untuk kebutuhan pasar lokal yaitu kebutuhan tenaga listrik setempat baik industri maupun rumah tangga dan jika memungkinan dapat dialirkan melalui pipa untuk perusahaan gas negara.Coal gas content potential  (Gas Content) Idamanggala, Rantau, South Kalimantan is around 6.72 m3/ton. Rantau coal gas resources (Gas in Place/GIP), South Kalimantan 0.002 tcf (90% gas saturation), range of depths from 50-150 meters. Coal Methane Gas (GMB) is produced by first engineering coal as a reservoir in order to obtain enough space as a way out of methane gas. The engineering process begins with producing water (dewatering) so that there is a change in mechanical balance. After the pressure drops, coal gas will come out of the coal matrix. Methane gas then flows through the coal fractures and finally exits into the wellbore. The peak production of Coal Methane Gas (GMB) varies between two weeks to three years. The field development plan starts from the first three years by conducting five pilot wells. Pilot drilling is carried out to recognize the dimensions of seam and its quality, both laterally and vertically. If government regulations are appropriate and allow to start development, the development of production wells can begin in 2021. The development of the South Kalimantan Overseas Coal Coal Field Development is prioritized for the needs of the local market, namely the needs of local electricity both industrial and household and if possible can be channeled through pipes for the state gas company.
Metode Inversi AVO Simultan untuk Mengetahui Sebaran Hidrokarbon Formasi Baturaja, Lapangan "Wine”, Cekungan Sumatra Selatan Anastasia Neni Candra Purnamasari
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 1, No 1 (2017): Jurnal Offshore : Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (800.76 KB) | DOI: 10.30588/jo.v1i1.239

Abstract

Data seismik 3D (CDP gather) pada daerah penelitian dilakukan proses inversi prestack yaitu inversi AVO simultan untuk mengetahui sebaran hidrokarbon. Data seismik 3D terbentang dengan jangkauan inline 1003-1302 dan xline 5002-5300. Metode inversi AVO simultan dilakukan dengan data masukan berupa angle stack yang diinversi secara bersama-sama (simultan) untuk menghasilkan impedansi-P, impedansi-S dan densitas. Dari hasil inversi impedansi-P dan inversi impedansi-S didapatkan nilai lambda-rho dan mu-rho sebagai hasil turunannya. Kisaran nilai hasil inversi impedansi-P, impedansi-S, densitas, lambda-rho dan mu-rho pada porous limestone formasi Baturaja yaitu nilai impedansi-P sekitar 11000-13500 m/s*g/cc, nilai impedansi-S sekitar 6500-7400 m/s*g/cc, nilai densitas sekitar 2,52-2,6 g/cc, nilai lambda-rho sekitar 36-70 Gpa*g/cc dan nilai mu-rho sekitar 41-59 Gpa*g/cc. Berdasarkan map slice hasil inversi impedansi-P, map slice hasil inversi impedansi-S, map slice hasil inversi densitas, map slice hasil inversi lambda-rho dan map slice hasil inversi mu-rho dapat diketahui area persebaran hidrokarbon pada formasi Baturaja. Persebaran hidrokarbon berada di sekitar sumur TT.3D seismic data (CDP gather) in the study area was carried out a prestack inversion process, namely simultaneous AVO inversion to determine the distribution of hydrocarbons. 3D seismic data stretches with inline range 1003-1302 and xline 5002-5300. Simultaneous AVO inversion method is done with input data in the form of angle stack which is inverted together (simultaneously) to produce P-impedance, S-impedance and density. From the results of P-impedance inversion and S-impedance inversion, the values of lambda-rho and mu-rho are derived as a result of their derivatives. The range of values of P-impedance inversion, S-impedance, density, lambda-rho and mu-rho in porous limestone formation i.e. the P-impedance value around 11000-13500 m/s*g/cc, the S-impedance value around 6500-7400 m/s*g/cc, the density value around 2.52-2.6 g/cc, the lambda-value rho around 36-70 Gpa*g/cc and your value around 41-59 Gpa*g/cc. Based on the P-impedance inversion map slice, S-impedance inversion map slice, density inversion map slice, lambda-rho inversion map slice and mu-rho inversion map slice can be known the area of hydrocarbon distribution in the Baturaja formation. Hydrocarbon spread is around the TT well.
Dampak Eksploitasi Minyak Dan Gas Bumi Pada Degradasi Biota Perairan Dan Penurunan Kualitas Air Permukaan Ai Siti Fatimah; Suratman .
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 4, No 1 (2020): Jurnal Offshore : Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (480.823 KB) | DOI: 10.30588/jo.v4i1.732

Abstract

Kegiatan penambangan minyak dan gas bumi di Tuban Jawa Timur, menghasilkan limbah padat dan cair (air terproduksi) memberikan dampak pada lingkungan. Penelitian ini bertujuan untuk: (1) menganalisis kondisi kualitas air  permukaan di Sukowati, Mudi dan CPA (Central Processing Area); dan (2) menganalisis Parameter biota perairan jenis dan indeks keanekaragaman biota di perairan yang ada di sekitar lokasi. Metode pengumpulan data air sungai dan air drainase, menggunakan pengukuran langsung di lapangan (in-situ). Pengarnbilan sampling menggunakan cara grab sampling. Data hasil analisa laboratorium selanjutnya dilakukan dibandingkan dengan baku mutu sesuai Peraturan Gubernur Jatim No. 72 Tahun 2013 Tentang Baku Mutu Air Limbah Bagi Industri dan/atau Kegiatan Usaha Lainnya. Parameter biota perairan pengumpulan data dilakukan dengan pengambilan contoh plankton dan bentos dìsungai, contoh plankton kemudian dianalisis di laboratorium. Data hasil analisis contoh air laut di laboratorium kernudian dibandingkan dengan tolok ukur yaitu indeks keanekaragaman (H’) Shannon dan Wiener. Hasil perbandingan diuraikan secara deskriptif. Hasil penelitian menunjukkan bahwa air permukaan menimbulkan dampak yang meyebabkan penurunan kualitas air permukaan di area plan Sukowati, Mudi, Lengowangi, dan CPA. Biota perairan di Sukowati hasil analisis menunjukan indeks diversity antara 0,9039 - 2,9728. Beberapa lokasi menunjukan hasil indeks diversity berada di antara nilai 0 – 2, dimana menunjukan adanya tekanan terhadap lingkungan. Hal ini karena adanya perubahan suhu musiman yang menyebabkan biota perarian kembali pada kondisi awal pada saat kajian Initial Enviromnetal Examination (IEE). Penanggulangan dilakukan untuk meminimalisir terjadinya pencemaran air permukaan di lokasi minyak dan gas bumi Tuban Jawa Timur. Mengatasi penurunan air permukaan dengan konservasi ekosistem air permukaan di area plan Sukowati, Mudi, Lengowangi dan CPA secara teknis dan ekologi. Merupakan upaya dalam memperbaiki daerah aliran sungai dan daerah sekitarnya agar dapat dimanfaatkan serta menjadi produktif.Kata Kunci : sungai, air terproduksi, biota perairan, drainase, planktonOil and gas mining activities in Tuban, East Java, produce solid and liquid waste (produced water) that has an impact on the environtment. This research has in view to: (1) investigate the surface water quality in Sukowati, Mudi and CPA (Central Processing Area); and (2) investigate the parameters of aquatic species biota and the biota diversity index in the waters around the location. Methods for collecting river water and air drainage data are using in-situ direct measurements around the location. The sampling method investigated in the study is grab sampling method. Laboratory analysis data will be compared with quality standard in accordance with East Java Governor's Regulation No. 72 of 2013 concerning Wastewater Quality Standards for Industry and / or Other Business Activities. Data collection for the parameters of aquatic biota is done by taking plankton and benthic samples in the river, then plankton samples are investigated in the laboratory. The result of the analysis of seawater samples in the laboratory are then compared with the benchmarks namely Shannon and Wiener diversity index (H’). The results of the comparison are described descriptively. The result showed that surface water had an impact which caused a decrease in surface water quality in the plant area Sukowati, Mudi, Lengowangi and CPA. The result of aquatic biota analysis in Sukowati showed diversity index between 0.9039 - 2.9728. Several locations showed  diversity index result between 0 – 2,which indicates a pressure on the environment. This is caused by changes in temperature which causes aquatic biota to return to the initial conditions at the time of the Initial Environmental Examination (IEE) assessment. Improvement effort must be made on the watershed and surrounding areas so that they can be cultivated and become productive land, such as: Countermeasures must be taken to decrease surface water pollution at the Tuban East Java oil and gas area, and also overcoming surface water subsidence by technically and ecologically conserving surface water ecosystems in the Sukowati, Mudi, Lengowangi and CPA plant areas.Keyword : river, produced water, aquatic species biota, drainase, plankton
Perencanaan Pipa Dua Fasa pada Fasilitas Produksi Panas Bumi Dieng Ady Setya Nugroho
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 3, No 1 (2019): Jurnal Offshore : Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (343.129 KB) | DOI: 10.30588/jo.v3i1.492

Abstract

Lapangan Panas Bumi Dieng beroperasi sejak tahun 2004 dengan kapasitas turbin 60 MW serta memiliki target produksi sebesar 55 MW selama tigapuluh tahun. Lapangan ini, masih layak untuk dilakukan pengembangan dengan total sebesar 110 MW. Dalam mengoptimalkan kualitas uap (steam quality) dari kepala sumur sampai dengan input turbin maka perlu adanya perencanan mengenai dimensi dari pipa yang mengalirkan uap. Parameter yang diperhatikan dalam perencanaan pipa dua fasa yaitu diameter pipa dan penurunan tekanan. Tujuan penelitian adalah menentukan diameter pipa dua fasa dan penurunan tekanan pada salah satu sumur pengembangan lapangan Panas Bumi Dieng. Metodologi perhitungan dimensi pipa ini menggunakan standar ASME dalam penentuan diameter pipa dan menghitung besarnya penurunan tekanan sebelum input turbin menggunakan software pipesim. Hasil perhitungan salah satu sumur yang memiliki masa aliran sebesar 60 kg/s  didapatkan jenis pipa Xtra Strong (XS) kualitas uap 0.176 dengan diameter pipa 8 inchi serta kecepatan aliran yang optimal sebesar 27.33 m/s  serta penurunan tekanan dari well head menuju separator adalah 7, 476 bar dengan tekanan input turbin sebesar 22,985 bar.Dieng Geothermal Field operates since 2004 with a 60 MW turbine capacity and has a production target of 55 MW for thirty years. This field is still feasible for development with a total of 110 MW. In optimizing the quality of steam (steam quality) from the wellhead to the turbine input, it is necessary to plan on the dimensions of the pipe that flows steam. Parameters that are considered in planning two-phase pipes are pipe diameter and pressure drop. The research objective was to determine the two-phase pipe diameter and pressure drop at one of the wells in the Dieng Geothermal field development. The methodology for calculating the pipe dimensions uses the ASME standard in determining pipe diameter and calculating the amount of pressure drop before the turbine input using pipesim software. The calculation results of one well that has a flow period of 60 kg / s obtained Xtra Strong (XS) pipe type vapor quality 0.176 with 8 inches pipe diameter and optimal flow velocity of 27.33 m / s and pressure drop from well head to separator is 7 , 476 bars with turbine input pressure of 22,985 bars.
Proses Pirolisis Untuk Mengkonversi Limbah Plastik Menjadi Bahan Bakar Minyak Menggunakan Penyaringan Adsorban (Arang dan Zeolit) Muhammad Sigit Cahyono; Sri Haryono; Wirawan Widya Mandala
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 5, No 2 (2021): Jurnal Offshore: Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (187.751 KB) | DOI: 10.30588/jo.v5i2.993

Abstract

sebuah teknologi dekomposisi bahan organic pada suhu tinggi tanpa adanya oksigen. Tujuan dari penelitian ini adalah untuk mengetahui proses konversi sampah plastic menjadi bahan bakar minyak yang optimal dan memahami pengaruh penggunaan absorban arang dan zeolite sebagai media proses pemurnian minyak pirolisis. Percobaan ini menggunakan reactor dengan ketebalan 2 mm, diameter 60 cm dan ketinggian 55 cm. Proses pirolisis terjadi pada suhu 100-3500C menggunakan plastic LDPE sebanyak 40 kg/proses. Lebih lanjut, pemurnian hasil minyak pirolisis dengan variasi adsorban arang dan zeolite dengan pengujianr nilai kalor, viskositas, dan titik nyala di dalam laboratorium. Hasil pengujian menunjukkan bahwa variasi penggunaan absorben arang dan zeolite berpengaruh terhadap parameter pengujian minyak pirolisis tersebut. Nilai kalor terbesar adalah 9576.9713 cal/gr menggunakang absorban 100% arang, sedangkan viskositas terendah  sebesar 47.5 cP menggunakan 100% zeolit, serta titik nyala tertinggi adalah 137 °C menggunakan 100% zeolit. AbstractPyrolysis is a technological tool to process the thermal decomposition of organic materials at high temperatures in the absence of oxygen. The purpose of this study was to determine the conversion process of plastic waste in order to produce optimal fuel oil and to understand the significance of charcoal and zeolite adsorbents as a medium for the purification of pyrolysis oil. The study used a reactor with a thickness of 2 mm, with a diameter of 60 and a height of 55 cm. This pyrolysis process is carried out at a temperature of 100-3500C using LDPE plastic fuel of 40 Kg/process. Furthermore, purification of the pyrolysis oil using a variation of charcoal and zeolite adsorbants with parameters of calorific value, viscosity, and flashpoint results through laboratory tests. The results showed that the variation of the adsorbant structure of charcoal and zeolite stone as a medium for purification of pyrolysis oil products greatly affected the calorific value, viscosity, and flashpoint results. The highest average calorific value (9576.9713 cal/gr) using 100% wood charcoal, the highest average viscosity value (47.5 cP) using 100% zeolite, and the highest average flashpoint value (137 °C) using 100% zeolite.  
Proses Gasifikasi Limbah Padat Aren Menggunakan Fixed-Bed Updraft Gasifier dengan Variasi Jenis Bahan Ucik Ika Fenti Styana; Muhammad Sigit Cahyono
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 2, No 2 (2018): Jurnal Offshore : Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (322.789 KB) | DOI: 10.30588/jo.v2i2.400

Abstract

Salah satu potensi sumber energi di Indonesia adalah limbah biomasa berupa limbah padat industri aren. Tujuan penelitian ini adalah untuk mengetahui pengaruh jenis bahan terhadap suhu reaktor dan efisiensi proses gasifikasi limbah padat aren. Bahan baku yang digunakan didapatkan dari Sentra Industri Tepung Aren di Dusun Daleman, Kecamatan Tulung, Kabupaten Klaten. Sebelum diproses bahan dikeringkan terlebih dahulu dengan dijemur di bawah sinar matahari selama sehari, kemudian dilakukan analisa proksimat. Variabel penelitian adalah jenis bahan berupa limbah padat aren murni, campuran limbah padat aren dan tempurung kelapa, serta tempurung kelapa murni. Proses gasifikasi diawali dengan memasukkan bahan ke dalam reaktor tipe Fixed-bed Updraft Gasifier, kemudian dinyalakan sampai keluar gas yang bisa terbakar dan diuji selama satu jam. Syn gas yang terbentuk dianalisa kandungan gasnya, kemudian dibakar untuk mengetahui efisiensinya. Hasil penelitian menunjukkan bahwa jenis bahan mempengaruhi suhu proses di dalam reaktor, dimana suhu optimal dicapai pada gasifikasi tempurung kelapa murni, yaitu proses pengeringan pada suhu 120 °C, pirolisis 340 °C, Reduksi 650 °C, dan oksidasi 721 °C. Gas yang dihasilkan tersebut dapat terbakar selama 15 menit, dibandingkan campuran limbah padat aren - tempurung yang terbakar 8 menit dan limbah padat aren murni yang hanya mampu terbakar 1 menit.One of the potential energy sources in Indonesia is biomass waste in the form of palm sugar solid waste. The purpose of this study was to determine the effect of the type of material on the reactor temperature and the efficiency of the sugar palm solid waste gasification process. The raw materials used were obtained from the Palm Sugar Flour Industrial Center in Daleman Hamlet, Tulung District, Klaten Regency. Before processing the material is first dried by drying it in the sun for a day, then proximate analysis is done. The research variable is the type of material in the form of pure sugar palm solid waste, a mixture of palm sugar solid waste and coconut shell, and pure coconut shell. The gasification process is initiated by inserting the material into the Fixed-bed Updraft Gasifier type reactor, then igniting the flammable gas and testing it for one hour. The syn gas formed is analyzed for its gas content, then burned to find out its efficiency. The results showed that the type of material influences the process temperature inside the reactor, where the optimum temperature is achieved in pure coconut gas gasification, namely the drying process at 120 °C, pyrolysis 340 °C, Reduction 650 °C, and oxidation 721 °C. The resulting gas can burn for 15 minutes, compared to a mixture of aren solid waste - shells that burn for 8 minutes and pure aren solid waste that can only burn for 1 minute.
Stimulasi Thermochemical dan Electrical Downhole Heating sebagai Solusi Alternatif Penanganan Wax Problem pada Sumur High Pour Point Oil: Studi Kasus Lapangan "X" Didin Muhidin; Hananda M Rose
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol 4, No 2 (2020): Jurnal Offshore : Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (674.043 KB) | DOI: 10.30588/jo.v4i2.836

Abstract

Minyak mentah yang memiliki titik tuang tinggi (HPPO) disebabkan oleh adanya komponen berat seperti asphaltenes. Pada beberapa kasus, komponen asphaltenes dapat menyebabkan permasalahan seperti pengendapan wax pada tubing produksi. Untuk mengatasi masalah ini, beberapa instrumen, bahan kimia, dan teknik telah diusulkan dan digunakan. Sampai saat ini belum ada metode yang ekonomis untuk mencegah pengendapan asphaltenes. Oleh karena itu, diperlukan pengembangan asphaltene treatment program yang baru. Penulisan paper ini bertujuan memberikan perbandingan strategi alternatif dalam mengatasi masalah pengendapan wax pada interval kedalaman tubing tertentu dengan penggunaan Stimulasi Thermochemical maupun Electrical Downhole Heating. Metode penelitian yang digunakan adalah studi kasus penerapan Stimulasi Thermochemical pada sumur X-1 dan Electric Downhole Heating pada sumur X-2 dengan mengevaluasi dan menganalisis laju produksi, temperatur kepala sumur, dan efektivitas biaya kedua metode tersebut. Stimulasi Thermochemical adalah metode injeksi bahan kimia pada sumur produksi untuk menghasilkan panas atau reaksi eksotermik, dengan perendaman selama 12 hingga 24 jam. Sedangkan metode Electrical Downhole Heating digunakan untuk memanaskan minyak mentah pada tubing secara berkala dengan prinsip kerja berupa adanya sistem kontrol yang akan mempertimbangkan panas minimum untuk melelehkan wax dan secara bersamaan menjamin bahwa temperaturnya tidak akan melebihi temperatur operasi maksimum dari isolasi kabel. Berdasarkan hasil studi kasus, Electric Downhole Heating (EDH) mengungguli Stimulasi Thermochemical dalam hal kinerja dan efektivitas biaya. EDH meningkatkan profit sebesar 27% sekaligus mengurangi payout time (POT) sebesar 25% dibandingkan dengan Stimulasi Thermochemical.Kata Kunci: thermochemical, Electric Downhole Heating, HPPO, asphaltenes, wax treatment