cover
Contact Name
Ivan Ferdian
Contact Email
ivan.ijgbg@gmail.com
Phone
-
Journal Mail Official
ivan.ijgbg@gmail.com
Editorial Address
-
Location
Kota bandung,
Jawa barat
INDONESIA
IJOG : Indonesian Journal on Geoscience
ISSN : 23559314     EISSN : 23559306     DOI : -
Core Subject : Science,
The spirit to improve the journal to be more credible is increasing, and in 2012 it invited earth scientists in East and Southeast Asia as well as some western countries to join the journal for the editor positions in the Indonesia Journal of Geology. This is also to realize our present goal to internationalize the journal, The Indonesian Journal on Geoscience, which is open for papers of geology, geophysics, geochemistry, geodetics, geography, and soil science. This new born journal is expected to be published three times a year. As an international publication, of course it must all be written in an international language, in this case English. This adds difficulties to the effort to obtain good papers in English to publish although the credit points that an author will get are much higher.
Arjuna Subject : -
Articles 10 Documents
Search results for , issue "Vol 7, No 2 (2012)" : 10 Documents clear
The Paleo-Orientations of Northwestern Borneo and Adjacent South China Sea Basins Tjia, H. D.
Indonesian Journal on Geoscience Vol 7, No 2 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (801.735 KB) | DOI: 10.17014/ijog.v7i2.136

Abstract

DOI: 10.17014/ijog.v7i2.136Limited paleomagnetic data from West Kalimantan and southwestern Sarawak appear to indicate counter-clockwise (CCW) rotation of over 50 degrees during Cenozoic. On the other hand, similar studies from Sabah show conflicting results in terms of paleo-positions. This CCW information and other plate tectonic considerations have formed the base of Southeast Asia’s plate reconstructions that have seen print in a number of updated versions. The existing publications on extensive field and exploration data, including geological stress fields from wellbore breakouts, on northwestern Borneo and basins of South China Sea have not been taken into account. The latter wealth of information already established that the region under discussion consists of a mosaic-like assemblage of diverse tectono-stratigraphic terranes, each with separate tectonic development. Stress fields changed in different ways in the different terranes indicating definitively that regional, progressive CCW rotation of Borneo is not possible.
Thermal and Infrared Studies of Garnierite from the Soroako Nickeliferous Laterite Deposit, Sulawesi, Indonesia Sufriadin, Sufriadin; Idrus, Arifudin; Pramumijoyo, S.; Warmada, I. W.; Nur, I.; Imai, A.; Imran, A. M.; Kaharuddin, Kaharuddin
Indonesian Journal on Geoscience Vol 7, No 2 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3347.354 KB) | DOI: 10.17014/ijog.v7i2.137

Abstract

DOI: 10.17014/ijog.v7i2.137Mineralogical characterization of some garnierite samples from Soroako have been conducted using X-ray diffraction, thermal analysis, and infrared spectroscopy methods. XRD patterns reveal the samples mainly containing the mixture of kerolite (talc-like phase) and serpentine with minor smectite, sepiolite, and silica. Thermal analyses of garnierite samples indicated by DTA curves are in good agreement with patterns that have been reported in literature. Three endothermic peaks normally occur in the ranges between 58º C and <800º C illustrating three steps of weight losses: adsorbed, bound, and hydroxyl/crystal water. One additional weight loss in low temperature region of sepiolite is corresponding to the lost of zeolitic water. Infrared spectra appeared in 3800 - 3200 cm-1 region generally exhibit broad absorption bands, indicating low crystallinities of studied samples and can be assigned to the presence of hydroxyl group bonded to octahedral coordination mainly Mg atom. The bands observed at 1660 cm-1, 1639 cm-1, 1637 cm-1, and 1633 cm-1 in all samples indicate water molecules. FTIR spectra displaying the strong bands at 1045 cm-1, 1038 cm-1, and 1036 cm-1 could be related to the presence of Si-O-Si bonds linking to tetrahedral coordination. The strong absorption bands appeared at 511 cm-1, 505 cm-1, 499 cm-1, and 496 cm-1 in respective samples are attributed to divalent cation bonds (e.g. Mg, Ni-O). Both TG/DTA and FTIR seem to be the powerful tool in diagnosing the crystal chemistry of garnierite which is mainly composed of phyllosilicate minerals.
Limestone Diagenetic Records Based on Petrographic Data of Sentolo Formation at Hargorejo Traverse, Kokap, Kulonprogo Maryanto, Sigit
Indonesian Journal on Geoscience Vol 7, No 2 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1325.009 KB) | DOI: 10.17014/ijog.v7i2.138

Abstract

DOI: 10.17014/ijog.v7i2.138Limestone diagenetic records of Sentolo Formation have been studied in order to trace the history of the geological processes after the deposition of the rocks. A stratigraphic measure traverse was made in Hargorejo Village, Kulonprogo District, to identify the petrological characteristics of the Sentolo Formation. Limestone samples were taken along this traverse, and were used for a petrographic analysis. The analysis of thirtyeight limestone samples shows that the type is dominated by bioclastic grainstones which have been affected by various kinds of diagenetic processes after the deposition. The diagenetic processes recorded under the polarization microscope include cementation, replacement, bioturbation, micritization, recrystallization, dolomitization, compaction, fracturing, and leaching.
Depositional Environment of the Batuasih Formation on the Basis of Foraminifera Content: A Case Study in Sukabumi Region, West Java Province, Indonesia Hendrizan, M.; Praptisih, Praptisih; Putra, Purna S.
Indonesian Journal on Geoscience Vol 7, No 2 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3546.177 KB) | DOI: 10.17014/ijog.v7i2.139

Abstract

DOI: 10.17014/ijog.v7i2.139The research was carried out on the sediments of the Batuasih Formation cropping out at Batuasih Village, Cibatu River, Padaarang Sukabumi. Data obtained from field observation, as well as foraminifera and sedimentology analyses conducted in the laboratory, were used to interpret its depositional environment. The investigation was focused on planktonic and benthic foraminiferal assemblages for depositional environment interpretation that might not be used by previous researchers. The Batuasih Formation is composed of black shaly claystone, where the lower part is rich in clay ball, and limestone intercalations in the upper part of the formation. In Cibatu Section, no clay balls is recognized in the lower part, but intercalations of limestone still occur. However, a contrast difference is found in Padaarang section, where green claystone interbeds with fine-grained sandstone. The Batuasih Formation conformably overlies the Walat Formation containing conglomerate. Foraminifera fossil found in the Batuasih Formation consists of bad preserved black benthic and planktonic foraminifera, more abundant towards the lower part of formation. Based on foraminifera assemblage comprising genus Uvigerina, Cibicides, Elphidium, Operculina, Bulimina, Bolivina, Eponides, and Neoconorbina, supported by sedimentology data, the Batuasih Formation was deposited in a shallow to deep marine environtment, during Early Oligocene (P19) time. Upwards to be the Rajamandala Formation, the depositional environment tends to be shallower gradually.
Allostratigraphy of Punung Paleoreef based on Lithofacies Distributions, Jlubang Area, Pacitan Region-East Java Premonowati, Premonowati; Prastistho, B.; Firdaus, I. M.
Indonesian Journal on Geoscience Vol 7, No 2 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1619.43 KB) | DOI: 10.17014/ijog.v7i2.140

Abstract

DOI: 10.17014/ijog.v7i2.140Lithologically, Punung Formation as a paleoreef comprises coral boundstone rhodolith, algal grainstone, algal packstone, algal wackestone, algal floatstone, and algal rudstone. It is dominated by red algae and had formed a fringing reef in a warmly shallow marine environment. They built seven phases of paleoreef complex. Each paleoreef complex has been bounded by a local unconformity that is characterized by caliche. The Jaten Formation has becomes the base of the Punung paleoreef which build up by an angular unconformity contact on uppermost part. It consists of tuffaceous wacky sandstone with silicate cement. The formation as the reef base indicates two factors. The external factor because of the decrease of a volcanic activity and the internal one was caused by the depositional environment of the Jaten Formation becoming shallower. The subsurface runoff systems in many caves (like: Jaran cave and others) have the same southward direction to the dipping direction of algal grainstone lithofacies of Punung Formation. The vertical caves are formed by a jointing system.
The Paleo-Orientations of Northwestern Borneo and Adjacent South China Sea Basins H. D. Tjia
Indonesian Journal on Geoscience Vol 7, No 2 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (801.735 KB) | DOI: 10.17014/ijog.7.2.67-76

Abstract

DOI: 10.17014/ijog.v7i2.136Limited paleomagnetic data from West Kalimantan and southwestern Sarawak appear to indicate counter-clockwise (CCW) rotation of over 50 degrees during Cenozoic. On the other hand, similar studies from Sabah show conflicting results in terms of paleo-positions. This CCW information and other plate tectonic considerations have formed the base of Southeast Asia’s plate reconstructions that have seen print in a number of updated versions. The existing publications on extensive field and exploration data, including geological stress fields from wellbore breakouts, on northwestern Borneo and basins of South China Sea have not been taken into account. The latter wealth of information already established that the region under discussion consists of a mosaic-like assemblage of diverse tectono-stratigraphic terranes, each with separate tectonic development. Stress fields changed in different ways in the different terranes indicating definitively that regional, progressive CCW rotation of Borneo is not possible.
Thermal and Infrared Studies of Garnierite from the Soroako Nickeliferous Laterite Deposit, Sulawesi, Indonesia Sufriadin Sufriadin; Arifudin Idrus; S. Pramumijoyo; I. W. Warmada; I. Nur; A. Imai; A. M. Imran; Kaharuddin Kaharuddin
Indonesian Journal on Geoscience Vol 7, No 2 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3347.354 KB) | DOI: 10.17014/ijog.7.2.77-85

Abstract

DOI: 10.17014/ijog.v7i2.137Mineralogical characterization of some garnierite samples from Soroako have been conducted using X-ray diffraction, thermal analysis, and infrared spectroscopy methods. XRD patterns reveal the samples mainly containing the mixture of kerolite (talc-like phase) and serpentine with minor smectite, sepiolite, and silica. Thermal analyses of garnierite samples indicated by DTA curves are in good agreement with patterns that have been reported in literature. Three endothermic peaks normally occur in the ranges between 58º C and <800º C illustrating three steps of weight losses: adsorbed, bound, and hydroxyl/crystal water. One additional weight loss in low temperature region of sepiolite is corresponding to the lost of zeolitic water. Infrared spectra appeared in 3800 - 3200 cm-1 region generally exhibit broad absorption bands, indicating low crystallinities of studied samples and can be assigned to the presence of hydroxyl group bonded to octahedral coordination mainly Mg atom. The bands observed at 1660 cm-1, 1639 cm-1, 1637 cm-1, and 1633 cm-1 in all samples indicate water molecules. FTIR spectra displaying the strong bands at 1045 cm-1, 1038 cm-1, and 1036 cm-1 could be related to the presence of Si-O-Si bonds linking to tetrahedral coordination. The strong absorption bands appeared at 511 cm-1, 505 cm-1, 499 cm-1, and 496 cm-1 in respective samples are attributed to divalent cation bonds (e.g. Mg, Ni-O). Both TG/DTA and FTIR seem to be the powerful tool in diagnosing the crystal chemistry of garnierite which is mainly composed of phyllosilicate minerals.
Limestone Diagenetic Records Based on Petrographic Data of Sentolo Formation at Hargorejo Traverse, Kokap, Kulonprogo Sigit Maryanto
Indonesian Journal on Geoscience Vol 7, No 2 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1325.009 KB) | DOI: 10.17014/ijog.7.2.87-99

Abstract

DOI: 10.17014/ijog.v7i2.138Limestone diagenetic records of Sentolo Formation have been studied in order to trace the history of the geological processes after the deposition of the rocks. A stratigraphic measure traverse was made in Hargorejo Village, Kulonprogo District, to identify the petrological characteristics of the Sentolo Formation. Limestone samples were taken along this traverse, and were used for a petrographic analysis. The analysis of thirtyeight limestone samples shows that the type is dominated by bioclastic grainstones which have been affected by various kinds of diagenetic processes after the deposition. The diagenetic processes recorded under the polarization microscope include cementation, replacement, bioturbation, micritization, recrystallization, dolomitization, compaction, fracturing, and leaching.
Depositional Environment of the Batuasih Formation on the Basis of Foraminifera Content: A Case Study in Sukabumi Region, West Java Province, Indonesia M. Hendrizan; Praptisih Praptisih; Purna S. Putra
Indonesian Journal on Geoscience Vol 7, No 2 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3546.177 KB) | DOI: 10.17014/ijog.7.2.101 - 112

Abstract

DOI: 10.17014/ijog.v7i2.139The research was carried out on the sediments of the Batuasih Formation cropping out at Batuasih Village, Cibatu River, Padaarang Sukabumi. Data obtained from field observation, as well as foraminifera and sedimentology analyses conducted in the laboratory, were used to interpret its depositional environment. The investigation was focused on planktonic and benthic foraminiferal assemblages for depositional environment interpretation that might not be used by previous researchers. The Batuasih Formation is composed of black shaly claystone, where the lower part is rich in clay ball, and limestone intercalations in the upper part of the formation. In Cibatu Section, no clay balls is recognized in the lower part, but intercalations of limestone still occur. However, a contrast difference is found in Padaarang section, where green claystone interbeds with fine-grained sandstone. The Batuasih Formation conformably overlies the Walat Formation containing conglomerate. Foraminifera fossil found in the Batuasih Formation consists of bad preserved black benthic and planktonic foraminifera, more abundant towards the lower part of formation. Based on foraminifera assemblage comprising genus Uvigerina, Cibicides, Elphidium, Operculina, Bulimina, Bolivina, Eponides, and Neoconorbina, supported by sedimentology data, the Batuasih Formation was deposited in a shallow to deep marine environtment, during Early Oligocene (P19) time. Upwards to be the Rajamandala Formation, the depositional environment tends to be shallower gradually.
Allostratigraphy of Punung Paleoreef based on Lithofacies Distributions, Jlubang Area, Pacitan Region-East Java Premonowati Premonowati; B. Prastistho; I. M. Firdaus
Indonesian Journal on Geoscience Vol 7, No 2 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1619.43 KB) | DOI: 10.17014/ijog.7.2.113 - 122

Abstract

DOI: 10.17014/ijog.v7i2.140Lithologically, Punung Formation as a paleoreef comprises coral boundstone rhodolith, algal grainstone, algal packstone, algal wackestone, algal floatstone, and algal rudstone. It is dominated by red algae and had formed a fringing reef in a warmly shallow marine environment. They built seven phases of paleoreef complex. Each paleoreef complex has been bounded by a local unconformity that is characterized by caliche. The Jaten Formation has becomes the base of the Punung paleoreef which build up by an angular unconformity contact on uppermost part. It consists of tuffaceous wacky sandstone with silicate cement. The formation as the reef base indicates two factors. The external factor because of the decrease of a volcanic activity and the internal one was caused by the depositional environment of the Jaten Formation becoming shallower. The subsurface runoff systems in many caves (like: Jaran cave and others) have the same southward direction to the dipping direction of algal grainstone lithofacies of Punung Formation. The vertical caves are formed by a jointing system.

Page 1 of 1 | Total Record : 10


Filter by Year

2012 2012


Filter By Issues
All Issue Vol 10, No 2 (2023): in-press Vol. 10 No. 1 (2023) Vol 10, No 1 (2023) Vol 9, No 3 (2022) Vol 9, No 2 (2022) Vol. 9 No. 2 (2022) Vol 9, No 1 (2022) Vol 8, No 3 (2021) Vol. 8 No. 3 (2021) Vol 8, No 2 (2021) Vol. 8 No. 2 (2021) Vol 8, No 1 (2021) Vol 7, No 3 (2020) Vol 7, No 2 (2020) Vol 7, No 1 (2020) Vol 6, No 3 (2019) Vol 6, No 3 (2019): in-press Vol 6, No 2 (2019) Vol 6, No 2 (2019) Vol 6, No 1 (2019) Vol 6, No 1 (2019) Vol 5, No 3 (2018) Vol 5, No 3 (2018) Vol 5, No 2 (2018) Vol 5, No 2 (2018) Vol 5, No 1 (2018) Vol. 5 No. 1 (2018) Vol 5, No 1 (2018) Vol 4, No 3 (2017) Vol 4, No 3 (2017) Vol 4, No 2 (2017) Vol 4, No 2 (2017) Vol 4, No 1 (2017) Vol 4, No 1 (2017) Vol 3, No 3 (2016) Vol 3, No 3 (2016) Vol 3, No 2 (2016) Vol 3, No 2 (2016) Vol 3, No 1 (2016) Vol 3, No 1 (2016): in-press Vol 2, No 3 (2015) Vol 2, No 3 (2015) Vol 2, No 2 (2015) Vol 2, No 2 (2015) Vol 2, No 1 (2015) Vol 2, No 1 (2015) Vol 1, No 3 (2014) Vol 1, No 3 (2014) Vol 1, No 2 (2014) Vol 1, No 2 (2014) Vol 1, No 1 (2014) Vol 1, No 1 (2014) Vol 8, No 4 (2013) Vol 8, No 4 (2013) Vol 8, No 3 (2013) Vol 8, No 3 (2013) Vol 8, No 2 (2013) Vol 8, No 2 (2013) Vol 8, No 1 (2013) Vol 8, No 1 (2013) Vol 7, No 4 (2012) Vol 7, No 4 (2012) Vol 7, No 3 (2012) Vol 7, No 3 (2012) Vol 7, No 2 (2012) Vol 7, No 2 (2012) Vol 7, No 1 (2012) Vol 7, No 1 (2012) Vol 6, No 4 (2011) Vol 6, No 4 (2011) Vol 6, No 3 (2011) Vol 6, No 3 (2011) Vol 6, No 2 (2011) Vol 6, No 2 (2011) Vol 6, No 1 (2011) Vol 6, No 1 (2011) Vol 5, No 4 (2010) Vol 5, No 4 (2010) Vol 5, No 3 (2010) Vol 5, No 3 (2010) Vol 5, No 2 (2010) Vol 5, No 2 (2010) Vol 5, No 1 (2010) Vol 5, No 1 (2010) Vol 4, No 4 (2009) Vol 4, No 4 (2009) Vol 4, No 3 (2009) Vol 4, No 3 (2009) Vol 4, No 2 (2009) Vol 4, No 2 (2009) Vol 4, No 1 (2009) Vol 4, No 1 (2009) Vol 3, No 4 (2008) Vol 3, No 4 (2008) Vol 3, No 3 (2008) Vol 3, No 3 (2008) Vol 3, No 2 (2008) Vol 3, No 2 (2008) Vol 3, No 1 (2008) Vol 3, No 1 (2008) Vol 2, No 4 (2007) Vol 2, No 4 (2007) Vol 2, No 3 (2007) Vol 2, No 3 (2007) Vol 2, No 2 (2007) Vol 2, No 2 (2007) Vol 2, No 1 (2007) Vol 2, No 1 (2007) Vol 1, No 4 (2006) Vol 1, No 4 (2006) Vol 1, No 3 (2006) Vol 1, No 3 (2006) Vol 1, No 2 (2006) Vol 1, No 2 (2006) Vol 1, No 1 (2006) Vol 1, No 1 (2006) More Issue