cover
Contact Name
Sandri Erfani, S.Si, M.Eng.
Contact Email
sandri.erfani@eng.unila.ac.id
Phone
+6282350155362
Journal Mail Official
jge.tgu@eng.unila.ac.id
Editorial Address
Geophysical Engineering Department Engineering Faculty Universitas Lampung, Prof. Dr. Sumantri Brojonegoro Street No 1, Rajabasa District, Bandar Lampung, Indonesia 35145
Location
Kota bandar lampung,
Lampung
INDONESIA
JGE (Jurnal Geofisika Eksplorasi)
Published by Universitas Lampung
ISSN : 23561599     EISSN : 26856182     DOI : https://doi.org/10.23960/jge
Core Subject : Science,
Jurnal Geofisika Eksplorasi adalah jurnal yang diterbitkan oleh Jurusan Teknik Geofisika Fakultas Teknik Universitas Lampung. Jurnal ini diperuntukkan sebagai sarana untuk publikasi hasil penelitian, artikel review dari peneliti-peneliti di bidang Geofisika secara luas mulai dari topik-topik teoritik dan fundamental sampai dengan topik-topik terapandi berbagai bidang. Jurnal ini terbit tiga kali dalam setahun (Maret, Juli dan November), Volume pertama terbit pada tahun 2013 dengan nama Jurnal Geofisika Eksplorasi (JGE).
Articles 8 Documents
Search results for , issue "Vol 5, No 1 (2019)" : 8 Documents clear
ANALISIS RESERVOAR MIGAS (SANDSTONE) MENGGUNAKAN MULTIATRIBUT SEISMIK PADA LAPANGAN TG12, CEKUNGAN BARITO, KALIMANTAN SELATAN Edo Pratama; Bagus Sapto Mulyatno; Ahmad Zaenudin
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.19

Abstract

The study using multi attribute seismic has been done on TG12 field which situated at Lower Foreland Formation, Barito Basin dominated by sandstone on layer area of the target X. The objective of the study is to map the sandstone reservoir by predict distribution value of gamma ray log, neutron porosity, and density which goes through wells such as FM1, FM2, FM3, and FM4 on seismic data. Total attribute that is being used by step wise regression method by considering validation error. Multiattribute process only applied on FM2, FM3, and FM4 wells, whereas FM1 is used as a test well to determine the correlation value between seismic data and log data that is being used. In addition, from well test correlation showing great correlation result of neutron porosity log and density log both obtain the correlation around 0.6322 and 0.6557 while the gamma ray log obtain low correlation that is 0.1647 towards multi attribute result. The processing result of multi attribute obtained distribution of sandstone with gamma ray estimation range value of 65-75.8API, neutron porosity estimation range value 0.15-0.2262, while density estimation range value 2.4308-2.77gr/cc.
APLIKASI METODE GEOLISTRIK RESISTIVITAS KONFIGURASI WENNER- SCHLUMBERGER UNTUK MENGIDENTIFIKASI LITOLOGI BATUAN BAWAH PERMUKAAN DAN FLUIDA PANAS BUMI WAY RATAI DI AREA MANIFESTASI PADOK DI KECAMATAN PADANG CERMIN KABUPATEN PESAWARAN PROVINSI LAMPUNG Wilyan Pratama; Rustadi Rustadi
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.21

Abstract

Research area is located in Padang Cermin Sun-District, Pesawaran Regency, Lampung Province. Manifestation in research area is hot water pool with surface temperatures reach 900C. Data acquisition has been done by Wenner-Schlumberger configuration with 5 acquisition line. Line 1, line 4 and line 5 have 280 meters length. Line 2 have 240 meters length and line 3 have 320 meters length with a spacing of each electrodes in each lines is every 5 meters. The objective of this research are (1)examining the geochemical contaminant and fluid types, (2)identifies the geothermal fluid based on 2D and 3D resistivity data analysis, also (3)identifies the layer of rock in Padok manifestation area based on 2D and 3D subsurface resistivity section. Subsurface lithology in research area generally divides into 4 parts. Which is hot water fluid with mean resistivity value between 1 Ωm into 3 Ωm and based on geochemistry data the fluid type is chloride water; surface sediment with resistivity value between 6 Ωm into 50 Ωm and identified as swamp sediment and alluvium sediment divides into gravels, pebbles, sands, clay and peat; Gravels, pebbles, sands, clay and peat with resistivity value between 50 Ωm into 100 Ωm; and igneous rock (andesite-basalt) with resistivity value more than 100 Ωm.
PENDUGAAN PATAHAN DAERAH “Y” BERDASARKAN ANOMALI GAYABERAT DENGAN ANALISIS DERIVATIVE Yasrifa Fitri Aufia; Karyanto Karyanto; Rustadi Rustadi
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.24

Abstract

The research area "Y" is an area of gold mineralization with low sulfidation epithermal type deposit. The existence of this type of mineralization on the path marked by the presence of mineral deposits, which form the quartz veined below the surface of the deposited within the structure of the fault. In this study, analysis of gravity data using derivatives analysis, i.e. First Horizontal Derivative (FHD) to determine the boundary fault structure and Second Vertical Derivative (SVD) to determine the type of fault. The existence of the fault structure integrated with subsurface modeling results in two-dimensional and three-dimensional. The results showed three line slice made in the area of research, identified structure of down faults (normal) trending northeast - south on slice 1 with an estimated dip (slope) is 22° and expected of strike on this fault is N 158° W and thrust fault structure trending northwest - south on slice 2 also slice 3 with an estimated dip (slope) is 22° and expected of strike on this fault is N 158° E. The results of the modeling of two-dimensional and three-dimensional show fracture structure is at the density of 2 g/cc – 2,67 g/cc in the depth of around 100 m - 250 m that consists of sedimentary rocks (clay and sandstone) with a density of 2,2 g/cc – 2,3 g/cc at the age of Tertiary Pliocene, tuff rock with a density of 2,4 g/cc – 2,5 g/cc at the age of Early Miocene and bedrock (basement) in andesite form with a density of 2,67 g/cc.
ANALISIS PETROFISIKA UNTUK MENENTUKAN OIL-WATER CONTACT PADA FORMASI TALANGAKAR, LAPANGAN “FBT”, CEKUNGAN SUMATRA SELATAN Febrina Bunga Tarigan; Ordas Dewanto; Karyanto Karyanto; Rahmat Catur Wibowo; Andika Widyasari
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.20

Abstract

In conducting petrophysics analysis, there are many methods on each property. Therefore, it is necessary to determine the exact method on each petrophysical property suitable for application in the field of research in order to avoid irregularities at the time of interpretation. The petrophysical property consists of volume shale, porosity, water saturation, etc. This research used six well data named FBT01, FBT02, FBT03, FBT04, FBT05, and FBT06 and also assisted with core data contained in FBT03. Core data used as a reference in petrophysical analysis because it was considered to have represented or closed to the actual reservoir conditions in the field. The area in this research was in Talangakar Formation, "FBT" Field, South Sumatra Basin. The most suited volume shale method for “FBT” field condition was gamma ray-neutron-density method by seeing its photo core and lithology. As for the effective porosity, the most suited method for the field was neutron-density-sonic method by its core. Oil-water contact was useful to determine the hydrocarbon reserves. Oil-water contact was obtained at a depth of 2277.5 feet on FBT01, 2226.5 feet on FBT02, 2312.5 feet on FBT03, 2331 feet on FBT04, 2296 feet on FBT05, and 2283.5 feet on FBT06. The oil-water contact depth differences at Talangakar formation in FBT field caused by structure in subsurface.
IDENTIFIKASI BATAS SUB-CEKUNGAN HIDROKARBON MENGGUNAKAN ANALISIS SHD (SECOND HORIZONTAL DERIVATIVE) DAN SVD (SECOND VERTICAL DERIVATIVE) BERDASARKAN KORELASI DATA GAYABERAT DAN SEISMIK Wuri Andari; Karyanto Karyanto; Riski Kurniawan
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.23

Abstract

Gravity method generally can read the difference of rock density to identify subsurface structures. This research was conducted in Riau area with the aim of knowing fault and subsurface structure, and determining sub-basin boundary. Data processing was done by using spectral analysis, SHD and SVD analysis, and 2D modeling then later correlated with seismic section to find out the subsurface structure of research area. The results showed that the bouguer anomaly value had a range of values between 5.6 mGal to 33.2 mGal with a surface density of 1.95 g / cc. High anomaly were in the eastern region and low anomaly were in the NW - SE trending region. 6 low anomalies indicated as a sub-basin pattern were separated by a relatively high altitude area of North West Southeast. The average residual anomaly depth was about 2.3 km. Based on the 2D subsurface modeling results, there was layer structure from the youngest to eldest that were alluvial deposits, Petani Formation, Sihapas group and granitic rock as the base rock. The projected subsurface section to surface showed 5 sub-basins with basin width 4-12 km located in the sub-basin and fault indication area.
PENGOLAHAN DATA MIKROTREMOR BERDASARKAN METODE HVSR DENGAN MENGGUNAKAN MATLAB Winda Styani Yuliawati; Syamsurijal Rasimeng; Karyanto Karyanto
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.22

Abstract

The research has conducted to get the result of Matlab program for microtremor data processing. The purpose of this research is to apply Matlab software into microtremor data processing. The microtremor is the ground motion to identify earthquake vulnerability by using HVSR (Horizontal to Vertical Spectral Ratio) method. The HVSR method for comparing both of horizontal component and vertical component on microtremor wave to obtain the result dominant frequency(f0) based on the high spectrum H/V value from the analysis of HVSR curve. Based on this research which concludes that microtremor data processing has processed using Matlab software. The result of this data processing gives similar value from the geopsy software. The value of dominant frequency by Matlab software and geopsy software calculation are classified on the site class type II which is dominantly alluvium. Whereas, the result of dominant period by geopsy and Matlab are classified on the site class type I which shows as the bedrock.
Front Cover JGE Vol 5 No 1 2019 Editor JGE
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.51

Abstract

xxx
Introduction and Table of Content JGE Vol 5 No 1 March 2019 Editor JGE
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.52

Abstract

xxx

Page 1 of 1 | Total Record : 8