Muhammad Bachri Amran
Analytical Chemistry Research Group, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Indonesia

Published : 10 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Chemistry

Data Fusion of UV-Vis and FTIR Spectra Combined with Principal Component Analysis for Distinguishing of Andrographis paniculata Extracts Based on Cultivation Ages and Solvent Extraction Antonio Kautsar; Wulan Tri Wahyuni; Utami Dyah Syafitri; Syifa Muflihah; Nursifa Mawadah; Eti Rohaeti; Zulhan Arif; Bambang Prajogo; Muhammad Bachri Amran; Abdul Rohman; Mohamad Rafi
Indonesian Journal of Chemistry Vol 21, No 3 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.60321

Abstract

Andrographis paniculata is one of the medicinal plants used for the treatment of antidiabetic. Cultivation ages and solvent extraction affected metabolites' composition and concentration that directly cause the plant's efficacies. This research aimed to distinguish A. paniculata based on cultivation ages and solvent extraction using data fusion of UV-Vis and FTIR spectra combined with principal component analysis (PCA). A. paniculata with 2, 3, and 4 months post-planting were extracted by water, 50% ethanol, 70% ethanol, and ethanol. In each extract, we measured UV-Vis and FTIR spectra. Then, we used the data fusion from both spectra. We used UV-Vis and FTIR absorbance from 200–400 nm and 1800–400 cm–1, respectively. Each extract gives a similar pattern of UV-Vis and FTIR spectra, only differ in their intensities. PCA score plot in two and three-dimensional showed A. paniculata extracts could be distinguished based on cultivation ages and solvent extraction with a total variance of 86 and 92%, respectively. Furthermore, this study confirms the data fusion of UV-Vis and FTIR spectra could distinguished A. paniculata extracts combined with chemometrics based on cultivation ages and solvent extraction.
Selective Solid-Phase Extraction of Meropenem from Human Blood Plasma Using a Molecularly Imprinted Polymer Lasmaryna Sirumapea; Mohammad Ali Zulfikar; Muhammad Bachri Amran; Anita Alni
Indonesian Journal of Chemistry Vol 21, No 5 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.64025

Abstract

This study employed a selective and high adsorption performance for meropenem. Molecularly imprinted polymer for meropenem (MeIP) as the selective sorbent was prepared through a bulk polymerization reaction. Methacrylic acid, ethylene glycol dimethacrylate, benzoyl peroxide, and dimethyl sulfoxide were applied as functional monomer, crosslinker agent, initiator, and solvent, respectively. Scanning electron microscopy, thermogravimetric analysis, Brunauer-Emmett-Teller analysis, and Fourier transform infrared spectroscopy were used to characterize the morphology, pore size, and structure of imprinted polymers. The maximum adsorption capacity was achieved at pH = 3, after 4 h contacted, under 150 rpm, and 25 mg of polymer applied. The maximum adsorption capacity of MeIP for meropenem was 51.963 mg/L; the synthesized polymer had superior selectivity to meropenem compared to that of the other antibiotics (imprinting factor, IF = 2.58). Furthermore, the thermodynamic and kinetic analyses indicated that the results were in accord with the Freundlich model and the pseudo-second-order kinetic model, respectively. MeIP was selective in batch adsorption, and molecularly imprinted solid-phase extraction protocols were selective to meropenem. It was then applied to analyze meropenem in human blood plasma and resulted in 78.52 ± 2.71 of recovery.