Budi Nugroho
Departemen Ilmu Tanah Dan Sumbedaya Lahan, Fakultas Pertanian IPB, Jl. Meranti Kampus IPB Dramaga Bogor 16680

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Tropical Soils

Study of Root Exudate Organic Acids and Microbial Population in the Rhizosphere of Oil Palm Seedling . Anandyawati; Enok Sumarsih; Budi Nugroho; Rahayu Widyastuti
JOURNAL OF TROPICAL SOILS Vol 22, No 1: January 2017
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2017.v22i1.29-36

Abstract

Mutual interaction between plants and microbes occured in the rhizosphere is expected to increase productivity of crops or soil fertility for agriculture. Plants excrete root exudates to attract microbes, and then microbes obtain habitat and food supply from plants and can fulfill the nutrient requirements through assisted enzymatic activity.  The objective of the research was to study the types and amounts of root exudate organic acids, microbial population, and the relationship between root exudate organic acids and microbial population in the rhizosphere of oil palm seedlings. The study was conducted in a greenhouse using a planting medium of sterile quartz sand. The study was conducted using two factorials completely randomized design with three replications. The first factor was oil palm seedling age (control / no oil palm seed, 1, 3, 6, 9 and 12 months-old of oil palm seedlings) and the second factor was the periods of seedling growth (45, 90, 135 and 180 days), so in total there were 72 experimental units. The result of High Pressure Liquid Chromatography (HPLC) analysis revealed that four kinds of organic acids were observed in the rhizosphere of oil palm seedlings, with the highest concentration were: acetic acid (1.66 ppm), citric acid (0.157 ppm), malic acid (2.061 ppm) and oxalic acid (0.675) ppm. The highest total population of microbes, fungi, Azotobacter, phosphate solubilizing bacteria (PSB) and phosphate solubilizing fungi (PSF) were 19.38 × 106 cfu g-1 soil, 3.28 × 104 cfu g-1 soil, 12.09 × 105 cfu g-1 soil, 8.39 × 104 cfu g-1 soil and 1.15 × 104 cfu g-1 soil, respectively. There are positive correlations between root exudate organic acids and total microbes, fungi, Azotobacter, PSB and PSF are.Keywords: microbes, organic acids, rhizosphere, root exudates
The Changes of P-fractions and Solubility of Phosphate Rock in Ultisol Treated by Organic Matter and Phosphate Rock Sri Djuniwati; Budi Nugroho; Heru Bagus Pulunggono
JOURNAL OF TROPICAL SOILS Vol 17, No 3: September 2012
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2012.v17i3.203-210

Abstract

Phosphorus (P) is one of the essential elements for plant, however, its availability is mostly very low in acid soils. It is well documented that application of phosphate rock and organic matter are able to change the level of availability of P-form in acid soils.  The objective of the research were to evaluate the changes of P-fractions ( resin-P, NaHCO3-Pi, and NaHCO3-Po) and phosphate rock dissolution which were induced by application of organic matter (Imperata cylindrica, Pueraria javanica, dan Colopogonium mucunoides) and phosphate rock in Utisol Lampung.  The experiment was designed in a completely randomized design with three factors and three replications.  The first factor was the types of organic matter (I. cylindrica, P. javanica, and C. mucunoides), the second factor was the rate of organic matter (0, 2.5, and 5%), and the third factor was the rate of phosphate rock (0, 40, and 80 mg P kg-1).  The results showed that in the  rate of 0 and 1% organic matter, the type of organic matter did not affect P-fraction of NaHCO3-Pi, but in the rate of 2.5 and 5%,  NaHCO3-Pi due to application of  P. javanica, and C. mucunoides higher than due to application of  I. cylindrica.  However, the increasing rate of organic matter increased NaHCO3-Pi. Then, P-fraction of Resin-Pi was affected by the type of organic matter, the rate of  organic matter, and the rate of phosphate rock, respectively. P-fraction of resin-Pi due to application of P.  javanica, and C. mucunoides was higher than due to application of  I. cylindrica, but the effect of  P. javanica, and C. mucunoides was not different.  Increasing the rate of organic matter and phosphate rock increased P-fraction of resin-Pi and NaHCO3-Pi, but P-fraction of NaHCO3-Po was not affected by all treatments.  Meanwhile, dissolution of phosphate rock was affected by the kind of organic matter and soil reaction.  In the rate of 5% organic matter, dissolution of  phosphate rock by application of                                     I. cylindrica (70%) was higher than P. javanica (26.6%), and C.  mucunoides (33.5%), but in the rate of 1%, the effect of I. cylindrica , P. javanica, and C. mucunoides were not different.Keywords: C. mucunoides; I. cylindrica; P. javanica; phosphate rock; P-fractions[How to Cite: Djuniwati S, B Nugroho, and HB Pulunggono. 2012. The Changes of P-fractions and Solubility of Phosphate Rock in Ultisol Treated by Organic Matter and Phosphate Rock. J Trop Soils, 17: 203-210. doi: 10.5400/jts.2012.17.3.203][Permalink/DOI: www.dx.doi.org/10.5400/jts.2012.17.3.203]
Estimation of the Potential Carbon Emission from Acrotelmic and Catotelmic Peats Siti Nurzakiah; Supiandi Sabiham; Budi Nugroho; Dedi Nursyamsi
JOURNAL OF TROPICAL SOILS Vol 19, No 2: May 2014
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2014.v19i2.81-89

Abstract

Agricultural development on peatland in Indonesia has been constrained by the presence of environment issues in relation to the release of greenhouse gases (GHGs) particularly carbon dioxide (CO2) and methane (CH4) to the atmosphere. This study was aimed to predict the potential carbon emission based on carbon stocks in acrotelmic and catotelmic peats with the reference of groundwater level of peatland.  The results showed that groundwater levels have played an important  role  in  carbon  release, which  has  close  relationship  with  water  regime  of  the upper  layer  of  peats  that influenced by oxidative and reductive conditions of the land.  From the layer that having groundwater level fluctuations during the period from rainy to dry season (acrotelmic peat), the emissions were mostly dominated by CO2 release, while from permanent reductive-layer (catotelmic peat) was not detected.  The decrease of groundwater level from -49.6 to -109 cm has clearly influenced carbon emission.  From each decreasing 1.0 cm groundwater level, CO2 emission measured during the period of February - October 2013 was calculated to yield about 0.37 Mg ha-1 yr-1.Keywords: Acrotelmic and catotelmic peat, carbon emission, groundwater level [How to Cite: Siti N, S Sabiham, B Nugroho and Di Nursyamsi. 2014. Estimation of the Potential Carbon Emission from Acrotelmic and Catotelmic Peats. J Trop Soils 19(2): 91-99. Doi: 10.5400/jts.2014.19.2.91]