Ani Liza Asnawi
International Islamic University Malaysia

Published : 9 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 9 Documents
Search

Dynamic power allocation and scheduling for MIMO RF energy harvesting wireless sensor platforms Amar Esse; Khaizuran Abdullah; Mohamed Hadi Habaebi; Huda Adibah Mohd Ramli; Ani Liza Asnawi; Md. Rafiqul Islam
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 5: October 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i5.20413

Abstract

Radio frequency (RF) energy harvesting systems are enabling new evolution towards charging low energy wireless devices, especially wireless sensor networks (WSN). This evolution is sparked by the development of low-energy micro-controller units (MCU). This article presents a practical multiple input multiple output (MIMO) RF energy-harvesting platform for WSN. The RF energy is sourced from a dedicated access point (AP). The sensor node is equipped with multiple antennas with diverse frequency responses. Moreover, the platform allows for simultaneous information and energy transfer without sacrificing system duplexity, unlike time-switching RF harvesting systems where data is transmitted only for a portion of the total transmission duty cycle, or power-splitting systems where the power difference between the information signal (IS) and energy signal (ES) is neglected. The proposed platform addresses the gap between those two. Furthermore, system simulation and two energy scheduling methods between AP and sensor node (SN) are presented, namely, Continuous power stream (CPS) and intermittent power stream (IPS).
Development of web-based surveillance system for Internet of Things (IoT) application Siti Noorjannah Ibrahim; A. H. Hasan Basri; Ani Liza Asnawi
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (979.933 KB) | DOI: 10.11591/eei.v8i3.1520

Abstract

With the advancement of wireless technology, our dependency on smart system has increases to a higher level than before. Without doubt, integration between different technologies becomes inevitable in order create affordable surveillance system. This paper presents the development of with web-based surveillance system with a dedicated Android-based mobile application using a Raspberry Pi and its supporting components i.e., Pi-Camera, PIR motion sensor, Ultrasonic sensor, web-based and mobile application. The designed system also utilizes Node-Red development tools as the platform to integrate all components of the system, MQTT as the communication protocol for data acquisition and ThingSpeak as the middleware. The proposed system can be implemented over the internet using any computer and mobile devices, at anywhere and anytime. The system can automatically stream live video viewed from the Android mobile application and the Raspberry Pi device can send an alert notification to users via email and SMS. The system can be one possible features in smart home system and is considered as an affordable solution, customizable and easy to implement in comparison with other commercial surveillance system products such as CCTV or IP Camera.
Design and optimize microstrip patch antenna array using the active element pattern technique Khamis Ali; Norun Abdul Malek; Ahmad Zamani Jusoh; Sarah Yasmin Mohamad; Zuhairiah Zainal Abidin; Ani Liza Asnawi
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (889.278 KB) | DOI: 10.11591/eei.v8i3.1516

Abstract

Microstrip patch antennas are widely used in modern day communication devices due to their light weight, low cost and ease of fabrication. In this paper, we have designed and fabricated two Microstrip Patch Antennas (slotted-ring and truncated-slotted ring) and array at 2.4 GHz for Wireless Local Area Network (WLAN) applications using Computer Simulation Technology, CST. The antenna design consists of rectangular radiating patch on Rogers RT5880 substrate and is excited by using coaxial probe feeding technique. The truncated-slotted ring has been designed on top of the radiating patch to improve bandwidth. The simulation and measurement results of the both antennas are in close agreement with each other. Due to the good agreement of simulation and measurement results of truncated-slotted ring antenna in comparison with slotted-ring antenna, it has been selected for antenna array design. The simulated and measured S11 of truncated-slotted ring antenna shows -21dB and -15.6 dB at 2.4 GHz respectively. Then, the antenna has been formed into 1x4 array in order to observe its beamforming capability. The proposed antenna array is suitable for 802.11b/g/n Wi-Fi standard which is proposed to be used for IoT.
Design and optimize microstrip patch antenna array using the active element pattern technique Khamis Ali; Norun Abdul Malek; Ahmad Zamani Jusoh; Sarah Yasmin Mohamad; Zuhairiah Zainal Abidin; Ani Liza Asnawi
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (889.278 KB) | DOI: 10.11591/eei.v8i3.1516

Abstract

Microstrip patch antennas are widely used in modern day communication devices due to their light weight, low cost and ease of fabrication. In this paper, we have designed and fabricated two Microstrip Patch Antennas (slotted-ring and truncated-slotted ring) and array at 2.4 GHz for Wireless Local Area Network (WLAN) applications using Computer Simulation Technology, CST. The antenna design consists of rectangular radiating patch on Rogers RT5880 substrate and is excited by using coaxial probe feeding technique. The truncated-slotted ring has been designed on top of the radiating patch to improve bandwidth. The simulation and measurement results of the both antennas are in close agreement with each other. Due to the good agreement of simulation and measurement results of truncated-slotted ring antenna in comparison with slotted-ring antenna, it has been selected for antenna array design. The simulated and measured S11 of truncated-slotted ring antenna shows -21dB and -15.6 dB at 2.4 GHz respectively. Then, the antenna has been formed into 1x4 array in order to observe its beamforming capability. The proposed antenna array is suitable for 802.11b/g/n Wi-Fi standard which is proposed to be used for IoT.
Development of web-based surveillance system for Internet of Things (IoT) application Siti Noorjannah Ibrahim; A. H. Hasan Basri; Ani Liza Asnawi
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (979.933 KB) | DOI: 10.11591/eei.v8i3.1520

Abstract

With the advancement of wireless technology, our dependency on smart system has increases to a higher level than before. Without doubt, integration between different technologies becomes inevitable in order create affordable surveillance system. This paper presents the development of with web-based surveillance system with a dedicated Android-based mobile application using a Raspberry Pi and its supporting components i.e., Pi-Camera, PIR motion sensor, Ultrasonic sensor, web-based & mobile application. The designed system also utilizes Node-Red development tools as the platform to integrate all components of the system, MQTT as the communication protocol for data acquisition and ThingSpeak as the middleware. The proposed system can be implemented over the internet using any computer and mobile devices, at anywhere and anytime. The system can automatically stream live video viewed from the Android mobile application and the Raspberry Pi device can send an alert notification to users via email and SMS. The system can be one possible features in smart home system and is considered as an affordable solution, customizable and easy to implement in comparison with other commercial surveillance system products such as CCTV or IP Camera.
Design and optimize microstrip patch antenna array using the active element pattern technique Khamis Ali; Norun Abdul Malek; Ahmad Zamani Jusoh; Sarah Yasmin Mohamad; Zuhairiah Zainal Abidin; Ani Liza Asnawi
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (889.278 KB) | DOI: 10.11591/eei.v8i3.1516

Abstract

Microstrip patch antennas are widely used in modern day communication devices due to their light weight, low cost and ease of fabrication. In this paper, we have designed and fabricated two Microstrip Patch Antennas (slotted-ring and truncated-slotted ring) and array at 2.4 GHz for Wireless Local Area Network (WLAN) applications using Computer Simulation Technology, CST. The antenna design consists of rectangular radiating patch on Rogers RT5880 substrate and is excited by using coaxial probe feeding technique. The truncated-slotted ring has been designed on top of the radiating patch to improve bandwidth. The simulation and measurement results of the both antennas are in close agreement with each other. Due to the good agreement of simulation and measurement results of truncated-slotted ring antenna in comparison with slotted-ring antenna, it has been selected for antenna array design. The simulated and measured S11 of truncated-slotted ring antenna shows -21dB and -15.6 dB at 2.4 GHz respectively. Then, the antenna has been formed into 1x4 array in order to observe its beamforming capability. The proposed antenna array is suitable for 802.11b/g/n Wi-Fi standard which is proposed to be used for IoT.
Development of web-based surveillance system for Internet of Things (IoT) application Siti Noorjannah Ibrahim; A. H. Hasan Basri; Ani Liza Asnawi
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (979.933 KB) | DOI: 10.11591/eei.v8i3.1520

Abstract

With the advancement of wireless technology, our dependency on smart system has increases to a higher level than before. Without doubt, integration between different technologies becomes inevitable in order create affordable surveillance system. This paper presents the development of with web-based surveillance system with a dedicated Android-based mobile application using a Raspberry Pi and its supporting components i.e., Pi-Camera, PIR motion sensor, Ultrasonic sensor, web-based & mobile application. The designed system also utilizes Node-Red development tools as the platform to integrate all components of the system, MQTT as the communication protocol for data acquisition and ThingSpeak as the middleware. The proposed system can be implemented over the internet using any computer and mobile devices, at anywhere and anytime. The system can automatically stream live video viewed from the Android mobile application and the Raspberry Pi device can send an alert notification to users via email and SMS. The system can be one possible features in smart home system and is considered as an affordable solution, customizable and easy to implement in comparison with other commercial surveillance system products such as CCTV or IP Camera.
Simulation of Packet Scheduling in Cognitive Long Term Evolution-Advanced Mohamad ‘Ismat Hafizi Mansor; Huda Adibah Mohd Ramli; Ani Liza Asnawi; Farah Nadia Mohd Isa
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 2: November 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i2.pp533-540

Abstract

Real Time (RT) and Non-Real Time (NRT) multimedia content demand on mobile devices are increasing at a high pace. Long Term Evolution-Advanced (LTE-A) is expected to cater these demands. However, LTE-A operates at fixed spectrum which leads to spectrum scarcity. Cognitive Radio (CR) is one the promising technologies that is used to overcome spectrum scarcity and implementation of CR into LTE-A will improve spectrum availability and efficiency of the network. Furthermore, with addition of Packet Scheduling (PS) in the cognitive LTE-A, QoS requirement of the mobile users can be guaranteed. However, the study on the stated is very limited. Thus, this paper models, simulates and evaluates performance of five well-known PS algorithms for supporting the RT and NRT multimedia contents. The simulation results show that Maximum- Largest Weighted Delay First (M-LWDF) is the best candidate for implementation in the cognitive LTE-A.
Classification of ECG signals for detection of arrhythmia and congestive heart failure based on continuous wavelet transform and deep neural networks Rashidah Funke Olanrewaju; S. Noorjannah Ibrahim; Ani Liza Asnawi; Hunain Altaf
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i3.pp1520-1528

Abstract

According to World Health Organization (WHO) report an estimated 17.9 million lives are being lost each year due to cardiovascular diseases (CVDs) and is the top contributor to the death causes. 80% of the cardiovascular cases include heart attacks and strokes. This work is an effort to accurately predict the common heart diseases such as arrhythmia (ARR) and congestive heart failure (CHF) along with the normal sinus rhythm (NSR) based on the integrated model developed using continuous wavelet transform (CWT) and deep neural networks. The proposed method used in this research analyses the time-frequency features of an electrocardiogram (ECG) signal by first converting the 1D ECG signals to the 2D Scalogram images and subsequently the 2D images are being used as an input to the 2D deep neural network model-AlexNet. The reason behind converting the ECG signals to 2D images is that it is easier to extract deep features from images rather than from the raw data for training purposes in AlexNet. The dataset used for this research was obtained from Massachusetts Institute of Technology-Boston's Beth Israel Hospital (MIT-BIH) arrhythmia database, MIT-BIH normal sinus rhythm database and Beth Israel Deaconess Medical Center (BIDMC) congestive heart failure database. In this work, we have identified the best fit parameters for the AlexNet model that could successfully predict the common heart diseases with an accuracy of 98.7%. This work is also being compared with the recent research done in the field of ECG Classification for detection of heart conditions and proves to be an effective technique for the classification.