Md. Rafiqul Islam
International Islamic University Malaysia

Published : 10 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Analysis of different digital filters for received signal strength indicator Rafhanah Shazwani Rosli; Mohamed Hadi Habaebi; Md. Rafiqul Islam
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (756.867 KB) | DOI: 10.11591/eei.v8i3.1508

Abstract

Due to high demand in Internet of Things applications, researchers are exploring deeper alternative methods to provide efficiency in terms of application, energy, and cost among other factors. A frequently used technique is the Received Signal Strength Indicator value for different Internet of Things applications. It is imperative to investigate the digital signal filter for the Received Signal Strength Indicator readings to interpret it into more reliable data. A contrasting analysis of three different types of digital filters is presented in this paper, namely: Simple Moving Average filter, Alpha Trimmed Mean filter and Kalman filter. There are three criteria used to observe the performance of these digital filters which are noise reduction, data proximity and delays. Based on the criteria, the choice of digital signal processing filter can be determined in accordance with its implementations in [ractice. For example, Alpha-Trimmed Meanfilter is shown to be more efficient if used in the pre-processing of Received Signal Strength Indicator readings for physical intrusion detection due to its high data proximity. Hence, this paper illustrates the possibilities of the use of Received Signal Strength Indicator in different Internet of Things applications given a proper choice of digital signal processing filter.
Designing large-scale antenna array using sub-array Naimul Mukit; Md. Rafiqul Islam; Mohamed Hadi Habaebi; A. H. M. Zahirul Alam; Khaizuran Abdullah; Norun Farihah Abdul Malek; Rauful Nibir; Noor Hidayah M. Adnan; Eid Osman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (920.374 KB) | DOI: 10.11591/eei.v8i3.1529

Abstract

Antenna array of large scale have been examined for different applications including 5G technology. To get better data rate or a reliable link substantial number of antenna arrays have been utilized to provide high multiplexing gains as well as array gains with high directivity. In this paper a simple but efficient implementation technique of using sub-arrays for the improvement of large-sized uniform arrays. By repeating a small sub-array multiple times large arrays can be designed. This implication of utilizing small array simplifies the design of a larger array which allows the designer to concentrate on the smaller sub-array before assembling larger arrays. So, by investigating the sub arrays the performance and radiation characteristics of large arrays can be anticipated. The array-factor for a planar sub-array of 2x2 (4 elements) is analyzed using Mat-lab software and then a large array is formed by placing the 2x2 sub-array indifferent configurations in a rectangular arrangements up to 8x8 planar array. And then the results are validated with CST (Computer simulation technology) simulation results.In this way the array-factors, directivities, HPBWs, and side lobes of the constructed large arrays are analyzed and associated with the small sub-array.