A. H. M. Zahirul Alam
International Islamic University Malaysia

Published : 13 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 13 Documents
Search

Frequency dependency analysis for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (864.011 KB) | DOI: 10.11591/eei.v8i3.1524

Abstract

A differential capacitive sensing technique is discussed in this paper. The differential capacitive sensing circuit is making use of a single power supply. The design focus for this paper is on the excitation frequency dependency analysis to the circuit. Theory of the differential capacitive sensor under test is discussed and derivation is elaborated. Simulation results are shown and discussed. Next, results improvement has also been shown in this paper for comparison. Test was carried out using frequency from 40 kHz up to 400 kHz. Results have shown output voltage of Vout=0.07927 Cx+1.25205 and good linearity of R-squared value 0.99957 at 200 kHz. Potential application for this capacitive sensor is to be used for energy harvesting for its potential power supply.
Parasitic consideration for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (754.696 KB) | DOI: 10.11591/eei.v8i3.1526

Abstract

Parasitic integration for a single supply differential capacitive sensing technique is presented in this paper. In real capacitive sensor measurement, parasitic impedance exists in its measurement. This paper objective is to study the effect of capacitive and resistive parasitic to the capacitive sensor circuit. The differential capacitive sensor circuit derivation theory is elaborated first. Then, comparison is made using simulation. Test was carried out using frequency from 40 kHz up to 400 kHz. Result is presented and have shown good linearity of 0.99984 at 300 kHz, R-squared value. This capacitive sensor is expected to be used for energy harvesting application.
Designing large-scale antenna array using sub-array Naimul Mukit; Md. Rafiqul Islam; Mohamed Hadi Habaebi; A. H. M. Zahirul Alam; Khaizuran Abdullah; Norun Farihah Abdul Malek; Rauful Nibir; Noor Hidayah M. Adnan; Eid Osman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (920.374 KB) | DOI: 10.11591/eei.v8i3.1529

Abstract

Antenna array of large scale have been examined for different applications including 5G technology. To get better data rate or a reliable link substantial number of antenna arrays have been utilized to provide high multiplexing gains as well as array gains with high directivity. In this paper a simple but efficient implementation technique of using sub-arrays for the improvement of large-sized uniform arrays. By repeating a small sub-array multiple times large arrays can be designed. This implication of utilizing small array simplifies the design of a larger array which allows the designer to concentrate on the smaller sub-array before assembling larger arrays. So, by investigating the sub arrays the performance and radiation characteristics of large arrays can be anticipated. The array-factor for a planar sub-array of 2x2 (4 elements) is analyzed using Mat-lab software and then a large array is formed by placing the 2x2 sub-array indifferent configurations in a rectangular arrangements up to 8x8 planar array. And then the results are validated with CST (Computer simulation technology) simulation results.In this way the array-factors, directivities, HPBWs, and side lobes of the constructed large arrays are analyzed and associated with the small sub-array.
Design and implementation of a series switching SPSI for PV cell to use in carrier based grid synchronous system Tawfikur Rahman; S. M. A. Motakabber; Muhammad I. Ibrahimy; A. H. M. Zahirul Alam
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1663.675 KB) | DOI: 10.11591/eei.v8i2.1507

Abstract

A carrier-based grid synchronous method is proposed to develop the system efficiency, phase and power quality of the inverter output waves. The operating principle of a single-phase phase synchronous inverter (SPSI) is introduced, with proper synchronous paid to the switching-frequency synchronizing voltage made by the interleaved process, as well as actual mitigation approaches. In the construction of the SPSI, input and output filters are electrically coupled with the two sides of an inverter. The inverter power electronic switches and other electrical components are operated by carrier-based grid synchronous controller (CBGSC) with PWM regulator. The SPSI is designed and implemented with the Toshiba 40WR21 IGBT, Digital Microcontroller pulse controller (DMPC) and 4N35 Optocoupler with a fundamental frequency of 50Hz. The other parameters are considered as load resistance, =11Ω, duty cycle, 85%, carrier frequency, 2.5kHz and input DC voltage, ± 340V. In addition, LCL lowpass grid filters are used to convert squire wave to sine wave with required phase and frequency. Finally, the simulated and experimental results obtained with a carrier-based grid synchronous SPSI experimental prototype are exposed for justification, showing the phase error of 55% improvement, reduced 11% of THD and the conversion efficiency of 97.02% highly predicted by the proposed design technique to improve the microgrid system.
Frequency dependency analysis for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (864.011 KB) | DOI: 10.11591/eei.v8i3.1524

Abstract

A differential capacitive sensing technique is discussed in this paper. The differential capacitive sensing circuit is making use of a single power supply. The design focus for this paper is on the excitation frequency dependency analysis to the circuit. Theory of the differential capacitive sensor under test is discussed and derivation is elaborated. Simulation results are shown and discussed. Next, results improvement has also been shown in this paper for comparison. Test was carried out using frequency from 40 kHz up to 400 kHz. Results have shown output voltage of Vout=0.07927 Cx+1.25205 and good linearity of R-squared value 0.99957 at 200 kHz. Potential application for this capacitive sensor is to be used for energy harvesting for its potential power supply.
Parasitic consideration for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (754.696 KB) | DOI: 10.11591/eei.v8i3.1526

Abstract

Parasitic integration for a single supply differential capacitive sensing technique is presented in this paper. In real capacitive sensor measurement, parasitic impedance exists in its measurement. This paper objective is to study the effect of capacitive and resistive parasitic to the capacitive sensor circuit. The differential capacitive sensor circuit derivation theory is elaborated first. Then, comparison is made using simulation. Test was carried out using frequency from 40 kHz up to 400 kHz. Result is presented and have shown good linearity of 0.99984 at 300 kHz, R-squared value. This capacitive sensor is expected to be used for energy harvesting application.
Designing large-scale antenna array using sub-array Naimul Mukit; Md. Rafiqul Islam; Mohamed Hadi Habaebi; A. H. M. Zahirul Alam; Khaizuran Abdullah; Norun Farihah Abdul Malek; Rauful Nibir; Noor Hidayah M. Adnan; Eid Osman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (920.374 KB) | DOI: 10.11591/eei.v8i3.1529

Abstract

Antenna array of large scale have been examined for different applications including 5G technology. To get better data rate or a reliable link substantial number of antenna arrays have been utilized to provide high multiplexing gains as well as array gains with high directivity. In this paper a simple but efficient implementation technique of using sub-arrays for the improvement of large-sized uniform arrays. By repeating a small sub-array multiple times large arrays can be designed. This implication of utilizing small array simplifies the design of a larger array which allows the designer to concentrate on the smaller sub-array before assembling larger arrays. So, by investigating the sub arrays the performance and radiation characteristics of large arrays can be anticipated. The array-factor for a planar sub-array of 2x2 (4 elements) is analyzed using Mat-lab software and then a large array is formed by placing the 2x2 sub-array indifferent configurations in a rectangular arrangements up to 8x8 planar array. And then the results are validated with CST (Computer simulation technology) simulation results.In this way the array-factors, directivities, HPBWs, and side lobes of the constructed large arrays are analyzed and associated with the small sub-array.
Design and implementation of a series switching SPSI for PV cell to use in carrier based grid synchronous system Tawfikur Rahman; S. M. A. Motakabber; Muhammad I. Ibrahimy; A. H. M. Zahirul Alam
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1663.675 KB) | DOI: 10.11591/eei.v8i2.1507

Abstract

A carrier-based grid synchronous method is proposed to develop the system efficiency, phase and power quality of the inverter output waves. The operating principle of a single-phase phase synchronous inverter (SPSI) is introduced, with proper synchronous paid to the switching-frequency synchronizing voltage made by the interleaved process, as well as actual mitigation approaches. In the construction of the SPSI, input and output filters are electrically coupled with the two sides of an inverter. The inverter power electronic switches and other electrical components are operated by carrier-based grid synchronous controller (CBGSC) with PWM regulator. The SPSI is designed and implemented with the Toshiba 40WR21 IGBT, Digital Microcontroller pulse controller (DMPC) and 4N35 Optocoupler with a fundamental frequency of 50Hz. The other parameters are considered as load resistance, =11Ω, duty cycle, 85%, carrier frequency, 2.5kHz and input DC voltage, ± 340V. In addition, LCL lowpass grid filters are used to convert squire wave to sine wave with required phase and frequency. Finally, the simulated and experimental results obtained with a carrier-based grid synchronous SPSI experimental prototype are exposed for justification, showing the phase error of 55% improvement, reduced 11% of THD and the conversion efficiency of 97.02% highly predicted by the proposed design technique to improve the microgrid system.
Design and implementation of a series switching SPSI for PV cell to use in carrier based grid synchronous system Tawfikur Rahman; S. M. A. Motakabber; Muhammad I. Ibrahimy; A. H. M. Zahirul Alam
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1663.675 KB) | DOI: 10.11591/eei.v8i2.1507

Abstract

A carrier-based grid synchronous method is proposed to develop the system efficiency, phase and power quality of the inverter output waves. The operating principle of a single-phase phase synchronous inverter (SPSI) is introduced, with proper synchronous paid to the switching-frequency synchronizing voltage made by the interleaved process, as well as actual mitigation approaches. In the construction of the SPSI, input and output filters are electrically coupled with the two sides of an inverter. The inverter power electronic switches and other electrical components are operated by carrier-based grid synchronous controller (CBGSC) with PWM regulator. The SPSI is designed and implemented with the Toshiba 40WR21 IGBT, Digital Microcontroller pulse controller (DMPC) and 4N35 Optocoupler with a fundamental frequency of 50Hz. The other parameters are considered as load resistance, =11Ω, duty cycle, 85%, carrier frequency, 2.5kHz and input DC voltage, ± 340V. In addition, LCL lowpass grid filters are used to convert squire wave to sine wave with required phase and frequency. Finally, the simulated and experimental results obtained with a carrier-based grid synchronous SPSI experimental prototype are exposed for justification, showing the phase error of 55% improvement, reduced 11% of THD and the conversion efficiency of 97.02% highly predicted by the proposed design technique to improve the microgrid system.
Frequency dependency analysis for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (864.011 KB) | DOI: 10.11591/eei.v8i3.1524

Abstract

A differential capacitive sensing technique is discussed in this paper. The differential capacitive sensing circuit is making use of a single power supply. The design focus for this paper is on the excitation frequency dependency analysis to the circuit. Theory of the differential capacitive sensor under test is discussed and derivation is elaborated. Simulation results are shown and discussed. Next, results improvement has also been shown in this paper for comparison. Test was carried out using frequency from 40 kHz up to 400 kHz. Results have shown output voltage of Vout=0.07927 Cx+1.25205 and good linearity of R-squared value 0.99957 at 200 kHz. Potential application for this capacitive sensor is to be used for energy harvesting for its potential power supply.