Afsah Sharmin
International Islamic University Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

A novel bio-inspired routing algorithm based on ACO for WSNs Afsah Sharmin; F. Anwar; S. M. A. Motakabber
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1030.413 KB) | DOI: 10.11591/eei.v8i2.1492

Abstract

The methods to achieve efficient routing in energy constrained wireless sensor networks (WSNs) is a fundamental issue in networking research. A novel approach of ant colony optimization (ACO) algorithm for discovering the optimum route for information transmission in the WSNs is proposed here for optimization and enhancement. The issue of path selection to reach the nodes and vital correspondence parameters, for example, the versatility of nodes, their constrained vitality, the node residual energy and route length are considered since the communications parameters and imperatives must be taken into account by the imperative systems that mediate in the correspondence procedure, and the focal points of the subterranean insect framework have been utilized furthermore. Utilizing the novel technique and considering both the node mobility and the existing energy of the nodes, an optimal route and best cost from the originating node to the target node can be detected. The proposed algorithm has been simulated and verified using MATLAB and the simulation results demonstrate that new ACO based algorithm achieved improved performance, about 30% improvement compared with the traditional ACO algorithm, and faster convergence to determine the best cost route, and recorded an improvement in the energy consumption of the nodes per transmission.
A novel bio-inspired routing algorithm based on ACO for WSNs Afsah Sharmin; F. Anwar; S. M. A. Motakabber
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1030.413 KB) | DOI: 10.11591/eei.v8i3.1492

Abstract

The methods to achieve efficient routing in energy constrained wireless sensor networks (WSNs) is a fundamental issue in networking research. A novel approach of ant colony optimization (ACO) algorithm for discovering the optimum route for information transmission in the WSNs is proposed here for optimization and enhancement. The issue of path selection to reach the nodes and vital correspondence parameters, for example, the versatility of nodes, their constrained vitality, the node residual energy and route length are considered since the communications parameters and imperatives must be taken into account by the imperative systems that mediate in the correspondence procedure, and the focal points of the subterranean insect framework have been utilized furthermore. Utilizing the novel technique and considering both the node mobility and the existing energy of the nodes, an optimal route and best cost from the originating node to the target node can be detected. The proposed algorithm has been simulated and verified using MATLAB and the simulation results demonstrate that new ACO based algorithm achieved improved performance, about 30% improvement compared with the traditional ACO algorithm, and faster convergence to determine the best cost route, and recorded an improvement in the energy consumption of the nodes per transmission.
A novel bio-inspired routing algorithm based on ACO for WSNs Afsah Sharmin; F. Anwar; S. M. A. Motakabber
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1030.413 KB) | DOI: 10.11591/eei.v8i3.1492

Abstract

The methods to achieve efficient routing in energy constrained wireless sensor networks (WSNs) is a fundamental issue in networking research. A novel approach of ant colony optimization (ACO) algorithm for discovering the optimum route for information transmission in the WSNs is proposed here for optimization and enhancement. The issue of path selection to reach the nodes and vital correspondence parameters, for example, the versatility of nodes, their constrained vitality, the node residual energy and route length are considered since the communications parameters and imperatives must be taken into account by the imperative systems that mediate in the correspondence procedure, and the focal points of the subterranean insect framework have been utilized furthermore. Utilizing the novel technique and considering both the node mobility and the existing energy of the nodes, an optimal route and best cost from the originating node to the target node can be detected. The proposed algorithm has been simulated and verified using MATLAB and the simulation results demonstrate that new ACO based algorithm achieved improved performance, about 30% improvement compared with the traditional ACO algorithm, and faster convergence to determine the best cost route, and recorded an improvement in the energy consumption of the nodes per transmission.
Development of Approximate Prediction Model for 3-DOF Helicopter and Benchmarking with Existing Controllers Farhat Anwar; Rounakul Islam Boby; Hasmah Mansor; Sabahat Hussain; Afsah Sharmin
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 2: November 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i2.pp502-510

Abstract

Recent trend of living is getting modernized rapidly by the involvement of automatic systems. Within the aviation industry, automatic systems had become heavily reliable by the end of the nineteen centuries. The systems usually require controllable devices with desired control algorithm known as controller. Controllers can be replaced with, almost every mechanical automation aspect where, safety is a serious issue. But it is not easy to adapt a controller with a specific model at the beginning. It is important to predict the model before a controller works on the model and the controller parameters need to be adapted to get maximum efficiency. A 3-DOF (Three Degrees of Freedom) airframe model is an advanced benchmark model of real 3-DOF helicopter. It has the same uncommon model dynamics with nonlinearities, strong duel motor cross coupling system, uncertain characteristics, disturbances dependent, unmodeled dynamics and many more. The 3-DOF airframe model is a well-known platform for controller performance benchmarking. This research paper shows the development of an approximate prediction model of a Three Degrees of Freedom helicopter model and uses the proposed approximate model to observe the performance of an existent hybrid controller. The hybrid controller is the combination of two different controllers named Quantitative Feedback Theory (QFT) controller and Adaptive controller. To achieve the research objective, the proposed mathematical model of this airframe was used to develop transfer function and simulate with the hybrid controller in MATLAB. The performance of the controller based on the proposed heliframe model of 3-DOF helicopter have also been reported added within this paper.