Syaifudin Syaifudin
Department of Medical Electronics Engineering Technology

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Two Mode DPM Equipped with an Automatic Leak Test Using MPX5050GP and MPXV4115VC6U Sensors Fita Florensa Rooswita; Triana Rahmawati; Syaifudin Syaifudin
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i1.1

Abstract

The calibration process aims to guarantee measurement results in accordance with established standards. One of the tools used for pressure calibration is the Digital Presure Meter, which is the function of this tool to measure pressure on the Sphygmomanometer and Suction Pump or other tools that use pressure parameters for measurement. This module uses the Arduino system as a control and processing of analog data into digital data in order to condition the output of the MPX5050GP sensor for positive pressure and MPXV4115VC6U sensor for vacum pressure, this module uses a 4x20 LCD character display and there is a selection of mmHg and Kpa units with fluctuating resolution 0.25. Also in this module there is also an automatic leak test feature for the Sphygmomanometer, the measurement results obtained an average error of 7.3 mmHg for sphymomanometer measurements, and for suction pumps less than 1.5 Kpa. From these results it was concluded that this module can be used for the measurement of tools that use positive pressure and negative pressure.
Design of Phototherapy Radiometer with a Measurement Stability Improvement Ayu Dini Megantari; Syaifudin Syaifudin; Endang Dian Setioningsih
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i1.5

Abstract

The amount of radiation given from the phototherapy lamp (Blue Light) who not right for neonates with hyperbilirubin is feared to cause the bilirubin levels in not decrease accordance with the calculated dose. The purpose of this study is to make a Blue Light calibration device with a stable measurement. The contribution of this research is by determine a sensor who able to measure the irradiation value more accurately between TCS3200 and AS7262 sensor. TCS3200 sensor measures the wavelengths of 470nm, 524nm and 640nm and AS7262 sensor can measure wavelengths of 430-670nm. The results of both sensors are stored in the Electrically Erasable Programmable Read-Only Memory, with the amount of data and the length of measurement can be adjusted according to user needs. Measurement the irradiation value of two sensors is done simultaneously using 3 Watt Light Emitting Diode lamp as a Blue Light simulation where the lamp is placed directly above the sensor and distance of the lamp to the sensor is 10cm, 20cm, 30cm, and 40cm. The average uncertainty value with TCS3200 sensor is 14.65 and the average uncertainty value with AS7262 sensor is 2.17. Type A uncertainty value is based on results of repeated measurements that show how close the measurement results are to the actual value (stable measurement results). The results showed that the average uncertainty value on AS7262 sensor is relatively small, so its mean the measurement results of AS7262 sensor are stable. The author suggests using sensors who capable of reading the value of light radiation without conversion. The results of this study can be implemented to measure the intensity of the lamp and be used as a reference to determining the time of lamp replacement.
Simple and Low Cost Design of Infusion Device Analyzer Based on Arduino Nikmatul Jannah; Syaifudin Syaifudin; Liliek Soetjiatie; Muhammad Irfan Ali
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 2 (2020): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i2.4

Abstract

In the medical world, patient safety is a top priority. The number of workloads and frequency of use in the long term will affect the accuracy and precision of the equipment, therefore calibration is needed, namely the measurement activities to determine the truth of the appointment value of measuring instruments and/or measuring materials based on the standards of the Minister of Health Regulation No. 54/2015. The purpose of this study is to make the design of the Infusion Device Analyzer on flow rate parameters. The main advantage of this study is that the system can display three calibration results in one measurement at the same setting. The results of the calibration will determine the feasibility of an infusion pump or a syringe pump. This study uses the flow rate formula which is applied to the water level system to obtain the calibration results. The infrared photodiode sensor will detect the flow of water in the chamber that comes from the infusion or syringe pump. Furthermore, the sensor output will be processed by the microcontroller and the reading results are displayed on the liquid crystal display. The average measurement at a setting of 10 ml/hour is 9.36 ml/hour, at a setting of 50 ml/hour is 46.64 ml/hour and at a setting of 100 ml/hour is 96.04 ml/hour. Based on available data, this tool has an average error value of 5.69%, where the value exceeds the tolerance limit allowed by ECRI, which is ± 5%.
Design an Occlusion Calibrator using XGZP6887 and Servo Motor MG966R as a Simulator Rizki Auliya; Syaifudin Syaifudin; Liliek Soetjiatie
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 1 (2021): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i1.5

Abstract

A foreign fluid that enters the patient can cause some bodily reactions including infection, air embolism and blood clot. Side effects given will be fatal to the body, one of which occurs the blockage of the capillary vessels in the heart that can cause heart attack to stroke. The purpose of this research is to design a tool that can be used to measure maximum pressure as a form of the calibration of the syringe pump and infusion pump. The contribution of this research is that the system can simulate the presence of blockages in fluid flow and detect large pressure values detected by the Under Test Unit (UUT) with a motor peerround system that opens/closes fluid flow. Servo Motor MG966R simulate the presence of blockage with constant motor degree until the alarm UUT reads, then Sensor XGZP6887 detects the pressure generated by the blockage and processed by the microcontroller and displayed on the LCD display of the character. This study resulted in a maximum pressure average value of 7.12 Psi. The results showed that data retrieval had an error value of -0.12. This research can be implemented to perform pressure measurements on the syringe pump or infusion pump.