Claim Missing Document
Check
Articles

Found 10 Documents
Search
Journal : Indonesian Journal of Geospatial

Tectonic Strain in Sumatera Based on Continuous Sumatran GPS Array (SuGAR) Observation 2007-2008 Rino, Rino; Meilano, Irwan; Hilman Natawidjaja, Danny
Indonesian Journal of Geospatial Vol 1, No 2 (2012)
Publisher : Indonesian Journal of Geospatial

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2601.578 KB)

Abstract

Abstract. Sumatra is located near the place where the collision between Indo-Australian Plate and Eurasian Plate heppened. When Indo-Australian Plate moves below Eurasian Plate, the friction that occur between both plates causes the strain is being accumulated. The strain that exceeds the elastic limit will be released as an earthquake. GPS observation in Sumatra was conducted to analyse the velocity of vector displacement and the heterogenous of tectonic strain on the surface as one of the tectonic indication to earthquake mitigation in the future. The result from data processing shows vector displacement in Sumatra has northeast direction that indicate inter-seismic and southwest direction that indicate post-seismic. The strain distribution is extension that indicate post-seismic equally scatteres dominantly in zone where happened Aceh earthquake on 2004, Nias earthquake on 2005, Bengkulu on Sptember 12th 2007, and earthquake on Mentawai Island on September 13th 2007. While strain as compression shows Sumatera still has inter-seismic effect.Keywords: compression, earthquake, extension, GPS.
Analisis Deformasi Gunung Api Papandayan Berdasarkan Data Pengamatan GPS Tahun 2002 – 2011 Jamel, Ilham; Meilano, Irwan; Gumilar, Irwan; Anggraeni Sarsito, Dina; Z. Abidin, Hasanuddin
Indonesian Journal of Geospatial Vol 2, No 2 (2013)
Publisher : Indonesian Journal of Geospatial

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (295.433 KB)

Abstract

Abstrak. Gunung api Papandayan adalah gunung api yang terletak di Kabupaten Garut, Jawa Barat. Gunung api dengan ketinggian 2665 meter di atas permukaan laut itu terletak sekitar 70 km sebelah tenggara Kota Bandung. Gunung api Papandayan merupakan salah satu gunung api aktif di Indonesia. Salah satu metoda pemantaun aktivitas vulkanik gunung api adalah dengan metoda deformasi. Dalam melakukan penelitian deformasi yang terjadi, digunakan data pengamatan survei GPS (Global Positioning System). Pada dasarnya survei ini dilakukan untuk mengetahui pola dan kecepatan deformasi yang terjadi pada Gunung api Papandayan. Dari analisis unsur deformasi ini, dapat diketahui karakteristik deformasi yang terjadi pada gunung api tersebut. Pada Gunung api Papandayan deformasi yang terjadi dipengaruhi oleh tekanan magma dari dalam gunung. Dari analisis yang dilakukan, sumber magma dalam dan sumber magma dangkal mempengaruhi aktivitas gunung. Pada tahun 2003-2005 terdapat dua sumber magma dimana di sana terjadi proses inflasi. Pada tahun 2005-2008 hanya satu sumber yang mempengaruhi dimana di sana terjadi proses deflasi. Pada tahun 2008-Juli 2011 terdapat dua sumber  magma yang mempengaruhi dimana di sana terjadi proses deflasi dan inflasi. Pada Juli 2011-Agustus 2011 terdapat satu sumber magma dimana di sana terjadi proses inflasi. Pada tahun 2003-Agustus 2011 terdapat dua sumber magma dimana di sana terjadi proses deflasi dan inflasi.Kata Kunci : Survei GPS, deformasi, model Mogi 
Continuous GPS Time Series Data Analysis in Sumatera; Case of Study: Continuous Data SuGAR (Sumatran GPS Array) 2004-2007 Leila Hanief, Sarah; Meilano, Irwan; Darmawan Wijaya, Dudy
Indonesian Journal of Geospatial Vol 1, No 2 (2012)
Publisher : Indonesian Journal of Geospatial

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4659.033 KB)

Abstract

Abstract. In each GPS time series data, there are signals which exist and affect the result that has been received, which is called noise. Those noise components will form certain pattern in time series. Basically, time series has periodic component which commonly not being able to be detected directly. To detect which periodic component that dominantly affect the time series, there is a way which is called spectral analysis. With acknowledge periodic component in a time series, we can know the characteristic of the time series and then we can determine how many parameters will be needed to do curve fitting. There are two approximations in fitting, it is either linear fitting only or linear fitting with including periodic component. As a comparison between these two methods, we need to be estimate displacements velocity rate in a year. From the analysis that has been done, the result is that the biggest difference of displacements velocity rate between these two methods is 3.7 milimeters per year.Keywords: displacements velocity rate, fitting, periodic component, spectral analysis, time series.
Analisis Metode GPS Kinematik Menggunakan Perangkat Lunak RTKLIB Kuncoro, Henri; Meilano, Irwan; Anggraeni Sarsito, Dina
Indonesian Journal of Geospatial Vol 2, No 2 (2013)
Publisher : Indonesian Journal of Geospatial

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (326.591 KB)

Abstract

Abstract. One of the GPS kinematic processing software that developed in the current is RTKLIB. RTKLIB is the software which people can downloaded free and used free for it. This software can also perform data processing in fast and the data processing can be integrated in post-processing and real-time. In this study, the ability of RTKLIB tested by using GPS observation data with variations of the baseline length when earthquake not occured and earthquake offset detection from the GPS baseline processing results during earthquake. In this testing the stability of the GPS data processing results are ascertainable and it can be seen also the ability and reliability of the software in detecting earthquake offset. For comparison of the data processing results quality with RTKLIB, in this study selected TTC (Trimble Total Control) to process the GPS baseline of the same observasions From the results of GPS baseline processing with RTKLIB and TTC, it seems that RTKLIB results have better stability than TTC. In short baseline category have standard deviation less than 1 cm, in medium baseline category have standard deviation between 3-6 cm, whereas in long baseline category have standard deviation 3-8 cm. On the offset detection of earthquake, RTKLIB have ability to detect offset in more of baseline length variations than the TTC. Kata Kunci: GPS Kinematik, Offset Gempa, RTKLIBAbstract. One of the GPS kinematic processing software that developed in the current is RTKLIB. RTKLIB is the software which people can downloaded free and used free for it. This software can also perform data processing in fast and the data processing can be integrated in post-processing and real-time. In this study, the ability of RTKLIB tested by using GPS observation data with variations of the baseline length when earthquake not occured and earthquake offset detection from the GPS baseline processing results during earthquake. In this testing the stability of the GPS data processing results are ascertainable and it can be seen also the ability and reliability of the software in detecting earthquake offset. For comparison of the data processing results quality with RTKLIB, in this study selected TTC (Trimble Total Control) to process the GPS baseline of the same observasions From the results of GPS baseline processing with RTKLIB and TTC, it seems that RTKLIB results have better stability than TTC. In short baseline category have standard deviation less than 1 cm, in medium baseline category have standard deviation between 3-6 cm, whereas in long baseline category have standard deviation 3-8 cm. On the offset detection of earthquake, RTKLIB have ability to detect offset in more of baseline length variations than the TTC. Kata Kunci: GPS Kinematik, Offset Gempa, RTKLIB 
Review System Geodetic Reference In Some Countries Andreas, Heri; A. Sarsito, Dina; Meilano, Irwan
Indonesian Journal of Geospatial Vol 2, No 1 (2013)
Publisher : Indonesian Journal of Geospatial

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (538.236 KB)

Abstract

Abstract. Two important things in the scope of Geodesy and Geomatics engineering and geodetic science is positioning and coordinates. The position is defined simply as the existence of an object to other objects , while the coordinate is defined as a position statement quantitatively , or others mentioned in the definition of the coordinates is a quantity (numerical) to declare the location or position of a point (object) in a chamber (field) . To ensure consistency and standardization of a coordinate , which applies to the local system to the global (world) , it is necessary to declare the existence of a coordinate system . This system is called the coordinates reference system or Geodetic Reference System , with elements of a constituent or parameter consist of Reference Frame and coordinates Reference System on the earths static system , and the reference system , coordinates and Datum Reference Frame coordinates on the earths dynamic systems . Datum Coordinates further divided into several types of Datum Static, Semi Dynamic , Dynamic , Semi Kinematic and Kinematic .What Geodetic Reference System which is generally used in the global scope ( the world ) will be discussed in this paper . Hope this theme can be one basis when we as a community of Geodesy and Geomatics , or even national community select or determine what the true Geodetic Reference System . This paper will also discuss specifically Geodetic Reference System in several countries . Keywords : Positioning, Coordinate, Geodetic Reference System, Coordinate Datum
Interseismic Slip Distribution Analysis in East Java Ramdhani, Bagoes Dwi; Meilano, Irwan; Gunawan, Endra
Indonesian Journal of Geospatial Vol 5, No 1 (2018)
Publisher : Indonesian Journal of Geospatial

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (525.169 KB)

Abstract

We reexamined GPS stations in Eastern part of java to understand the recent deformation from the convergence zone between the Australian Plate and Sunda Block in East Java. From the seismic record in the subduction zone shown the occurrence of tsunami earthquake in M7.7 in 1994 and several number of earthquakes that potentially become tsunami. To comprehensively obtain the signal in subduction zone, we have to remove the effect of the other major sources deformation in the area of study, as in this study is the block motion from Sunda Block. To remove the block motion of Sunda Block we used the parameters of the model Altamimi (2007) in the GPS field. The used data for this research is several campaign GPS and Continuously GPS data from 2010 – 2016. These data processed using GAMIT/GLOBK 10.6 software to obtain geocentric coordinates, geodetic coordinates, and standard deviation which reference to ITRF2000. Geocentric coordinates are transformed into topocentric coordinates to know the rate of shift vector speed. From the obtained displacement rate, carried reduction to clean up from other deformation source. The value of surface deformation is made as input for the inversion calculation from dislocation theory in half space by Okada (1992). The result show the strong slip distribution in the two sides of fault model that located near the costal of Pacitan and the in the south of Banyuwangi, this slip distribution represent the coupling from the convergence zone. It indicates there are accumulating energy due to convergence of the megathrust. The comparison of surface deforomation from forward calculation and the GPS observation are nearly similar which indicated by the value of rms residual is ± 2.06 mm. However from the model accuracy and resolution found that model contain misfit in dependent location. From this research, we highlight the value of slip distribution correlating to the risk assessment in Java Island.
Analisis Deformasi Gunung Api Papandayan Berdasarkan Data Pengamatan GPS Tahun 2002 – 2011 Ilham Jamel; Irwan Meilano; Irwan Gumilar; Dina Anggraeni Sarsito; Hasanuddin Z. Abidin
Indonesian Journal of Geospatial Vol 2 No 2 (2013)
Publisher : Indonesian Journal of Geospatial

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak. Gunung api Papandayan adalah gunung api yang terletak di Kabupaten Garut, Jawa Barat. Gunung api dengan ketinggian 2665 meter di atas permukaan laut itu terletak sekitar 70 km sebelah tenggara Kota Bandung. Gunung api Papandayan merupakan salah satu gunung api aktif di Indonesia. Salah satu metoda pemantaun aktivitas vulkanik gunung api adalah dengan metoda deformasi. Dalam melakukan penelitian deformasi yang terjadi, digunakan data pengamatan survei GPS (Global Positioning System). Pada dasarnya survei ini dilakukan untuk mengetahui pola dan kecepatan deformasi yang terjadi pada Gunung api Papandayan. Dari analisis unsur deformasi ini, dapat diketahui karakteristik deformasi yang terjadi pada gunung api tersebut. Pada Gunung api Papandayan deformasi yang terjadi dipengaruhi oleh tekanan magma dari dalam gunung. Dari analisis yang dilakukan, sumber magma dalam dan sumber magma dangkal mempengaruhi aktivitas gunung. Pada tahun 2003-2005 terdapat dua sumber magma dimana di sana terjadi proses inflasi. Pada tahun 2005-2008 hanya satu sumber yang mempengaruhi dimana di sana terjadi proses deflasi. Pada tahun 2008-Juli 2011 terdapat dua sumber  magma yang mempengaruhi dimana di sana terjadi proses deflasi dan inflasi. Pada Juli 2011-Agustus 2011 terdapat satu sumber magma dimana di sana terjadi proses inflasi. Pada tahun 2003-Agustus 2011 terdapat dua sumber magma dimana di sana terjadi proses deflasi dan inflasi.Kata Kunci : Survei GPS, deformasi, model Mogi 
Analisis Metode GPS Kinematik Menggunakan Perangkat Lunak RTKLIB Henri Kuncoro; Irwan Meilano; Dina Anggraeni Sarsito
Indonesian Journal of Geospatial Vol 2 No 2 (2013)
Publisher : Indonesian Journal of Geospatial

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. One of the GPS kinematic processing software that developed in the current is RTKLIB. RTKLIB is the software which people can downloaded free and used free for it. This software can also perform data processing in fast and the data processing can be integrated in post-processing and real-time. In this study, the ability of RTKLIB tested by using GPS observation data with variations of the baseline length when earthquake not occured and earthquake offset detection from the GPS baseline processing results during earthquake. In this testing the stability of the GPS data processing results are ascertainable and it can be seen also the ability and reliability of the software in detecting earthquake offset. For comparison of the data processing results quality with RTKLIB, in this study selected TTC (Trimble Total Control) to process the GPS baseline of the same observasions From the results of GPS baseline processing with RTKLIB and TTC, it seems that RTKLIB results have better stability than TTC. In short baseline category have standard deviation less than 1 cm, in medium baseline category have standard deviation between 3-6 cm, whereas in long baseline category have standard deviation 3-8 cm. On the offset detection of earthquake, RTKLIB have ability to detect offset in more of baseline length variations than the TTC. Kata Kunci: GPS Kinematik, Offset Gempa, RTKLIBAbstract. One of the GPS kinematic processing software that developed in the current is RTKLIB. RTKLIB is the software which people can downloaded free and used free for it. This software can also perform data processing in fast and the data processing can be integrated in post-processing and real-time. In this study, the ability of RTKLIB tested by using GPS observation data with variations of the baseline length when earthquake not occured and earthquake offset detection from the GPS baseline processing results during earthquake. In this testing the stability of the GPS data processing results are ascertainable and it can be seen also the ability and reliability of the software in detecting earthquake offset. For comparison of the data processing results quality with RTKLIB, in this study selected TTC (Trimble Total Control) to process the GPS baseline of the same observasions From the results of GPS baseline processing with RTKLIB and TTC, it seems that RTKLIB results have better stability than TTC. In short baseline category have standard deviation less than 1 cm, in medium baseline category have standard deviation between 3-6 cm, whereas in long baseline category have standard deviation 3-8 cm. On the offset detection of earthquake, RTKLIB have ability to detect offset in more of baseline length variations than the TTC. Kata Kunci: GPS Kinematik, Offset Gempa, RTKLIB 
Review System Geodetic Reference In Some Countries Heri Andreas; Dina A. Sarsito; Irwan Meilano
Indonesian Journal of Geospatial Vol 2 No 1 (2013)
Publisher : Indonesian Journal of Geospatial

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. Two important things in the scope of Geodesy and Geomatics engineering and geodetic science is positioning and coordinates. The position is defined simply as the existence of an object to other objects , while the coordinate is defined as a position statement quantitatively , or others mentioned in the definition of the coordinates is a quantity (numerical) to declare the location or position of a point (object) in a chamber (field) . To ensure consistency and standardization of a coordinate , which applies to the local system to the global (world) , it is necessary to declare the existence of a coordinate system . This system is called the coordinates reference system or Geodetic Reference System , with elements of a constituent or parameter consist of Reference Frame and coordinates Reference System on the earth's static system , and the reference system , coordinates and Datum Reference Frame coordinates on the earth's dynamic systems . Datum Coordinates further divided into several types of Datum Static, Semi Dynamic , Dynamic , Semi Kinematic and Kinematic .What Geodetic Reference System which is generally used in the global scope ( the world ) will be discussed in this paper . Hope this theme can be one basis when we as a community of Geodesy and Geomatics , or even national community select or determine what the true Geodetic Reference System . This paper will also discuss specifically Geodetic Reference System in several countries . Keywords : Positioning, Coordinate, Geodetic Reference System, Coordinate Datum
Continuous GPS Time Series Data Analysis in Sumatera; Case of Study: Continuous Data SuGAR (Sumatran GPS Array) 2004-2007 Sarah Leila Hanief; Irwan Meilano; Dudy Darmawan Wijaya
Indonesian Journal of Geospatial Vol 1 No 2 (2012)
Publisher : Indonesian Journal of Geospatial

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. In each GPS time series data, there are signals which exist and affect the result that has been received, which is called noise. Those noise components will form certain pattern in time series. Basically, time series has periodic component which commonly not being able to be detected directly. To detect which periodic component that dominantly affect the time series, there is a way which is called spectral analysis. With acknowledge periodic component in a time series, we can know the characteristic of the time series and then we can determine how many parameters will be needed to do curve fitting. There are two approximations in fitting, it is either linear fitting only or linear fitting with including periodic component. As a comparison between these two methods, we need to be estimate displacements velocity rate in a year. From the analysis that has been done, the result is that the biggest difference of displacements velocity rate between these two methods is 3.7 milimeters per year.Keywords: displacements velocity rate, fitting, periodic component, spectral analysis, time series.