Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Jurnal Pengendalian Pencemaran Lingkungan (JPPL)

Simulasi Penyebaran dan Persentase Fatalitas Oleh Gas SO2 dan CO2 Hasil Pembakaran PLTU Independent Power Producer (IPP) Lombok Timur (50 MW) Dengan Low Rank Coal Menggunakan Model Gaussian Shafwan Amrullah; Sopyan Ali Rohman; Lalu Heri Rizaldi
Jurnal Pengendalian Pencemaran Lingkungan (JPPL) Vol. 4 No. 1 (2022): JPPL, Maret 2022
Publisher : Pusat Penelitian dan Pengabdian Kepada Masyarakat (P3M)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/jppl.v4i1.1193

Abstract

The Sembelia Steam Power Plant is located in East Lombok, West Nusa Tenggara and is managed by PT. Lombok Energy Dynamic uses the light coal until 200,000 tons per year. This case can be the environmental pollution. This study aims to calculate the SO2 and CO2 exhaust gases into the environment by the simulation as well as included the %fatality due to coal combustion of the The Sembelia Steam Power Plant with the model of Gaussian. This research was carried out by calculating the SO2 and CO2 concentrations released concentration. At the end of these project, we calculated the SO2 and CO2 released by the dispersion potential and %fatality at four points around it. The result of this research showed that the dispersion mass of SO2 dispersion was 0.096 kg per second (with distance of 2,000 to 46,000 m). This result showed that the increases (6.876x10-46 ppm to 1.276x10-5 ppm), and then showed that the decreases to 0 ppm. % Fatality in this study is 0%. The potential of CO2 dispersion with an outgoing mass of 8,252 kg/second increased (2,000-58,000 m) with a concentration of 62.47x10- 63 ppm to 7.9x10-4ppm. In the other hand, the concentration of CO2 was reduced to 0 ppm. In the end of this study showed that %fatality by the CO2 released is 0%, and the calculation of dispersion at four points around the The Sembelia Steam Power Plant is safe from the SO2 and CO2 dispersion.
Pengaruh Kecepatan Udara Primer Dan Sekunder Terhadap Kenerja Kompor Biomassa Berbahan Bakar Cangkang Kemiri Sopyan Ali Rohman; Abdurrahman Abdurrahman; Shafwan Amrullah
Jurnal Pengendalian Pencemaran Lingkungan (JPPL) Vol 4, No 1 (2022): JPPL, Maret 2022
Publisher : Pusat Penelitian dan Pengabdian Kepada Masyarakat (P3M)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/jppl.v4i1.1200

Abstract

Household energy need in Indonesia, especially for cooking, are still dominated by LPG fossil fuels with 70% of LPG needs being imported. On the other hand, the availability of biomass waste, especially candlenut shells, is abundant. One way to optimize the use of candlenut shells is to use candlenut shells as fuel for biomass stoves by optimizing the efficiency of biomass stoves. In this study, a biomass stove with primary and secondary airflow was used with a combustion chamber diameter of 200 mm and a height of 340 mm. The biomass waste used is candlenut shells as fuel. The purpose of this study was to explain the increase in the performance of a biomass stove fueled with candlenut shell which is influenced by primary and secondary air velocity. Biomass stove testing includes thermal efficiency, specific fuel consumption, CO and CO2 emissions. The performance test results show that the biomass stove with a primary air velocity of 3.7 m/s, a secondary air velocity of 3.7 m/s has the highest thermal efficiency of 45.77%. The lowest specific fuel consumption is obtained from a biomass stove with a primary air velocity of 1.5 m/s, a secondary air velocity of 1.5 m/s, which is 0.583 kg/hour, and the emission test results show that complete combustion occurs with 0% CO emotion. on all air velocity variables studied.
Karakterisasi Proses Gasifikasi Menjadi Listrik Berbahan Baku Sampah Padat Perkotaan Menggunakan Reaktor Tipe Downdraft di Provinsi Nusa Tenggara Barat Shafwan Amrullah; Sopyan Ali Rohman; Cyrilla Oktaviananda; Fadhli Dzil Ikram
Jurnal Pengendalian Pencemaran Lingkungan (JPPL) Vol. 4 No. 2 (2022): JPPL, September 2022
Publisher : Pusat Penelitian dan Pengabdian Kepada Masyarakat (P3M)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/jppl.v4i2.1433

Abstract

Indonesia is currently experiencing the problem of Municipal Solid Waste (MSW), energy and environmental crisis. Gasification by electric generator is the solution. This study about the design and characterization of the gasification reactor with MSW feed. This research was conducted by examining the effect of gasification temperature (550, 600, 650, 700, 750, 800, 850oC) and Air Fuel Ratio variations (0,5; 0,51; 0,53; 0,54l; and 0,55). The variabel test of temperature variations is syngas concentration, fuel conversion (FC), cold gas efficiency (CGE), carbon conversion efficiency (CCE), and specific fuel consumption (SCF). The AFR evaluated syngas and SCF. The result showed an increase the syngas levels with the increasing the gasification temperature, except CO2. The FC value increased(71% to 74%) and The CGE increases (77 to 97%). The CCE increases from 69% to 78% (550-650oC) and decreases again to 66% (850oC), and SCF decreased (4.5-0.5 kg/kWh). In the AFR variation, syngas levels increase with increasing AFR, but scf decreased (5.3 to 2), this proves efficient combustion.
Pengaruh Kecepatan Udara Primer dan Sekunder terhadap Kenerja Kompor Biomassa Berbahan Bakar Cangkang Kemiri Sopyan Ali Rohman; Abdurrahman; Shafwan Amrullah
Jurnal Pengendalian Pencemaran Lingkungan (JPPL) Vol. 4 No. 1 (2022): JPPL, Maret 2022
Publisher : Pusat Penelitian dan Pengabdian Kepada Masyarakat (P3M)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/jppl.v4i1.1462

Abstract

Household energy need in Indonesia, especially for cooking, are still dominated by LPG fossil fuels with 70% of LPG needs being imported. On the other hand, the availability of biomass waste, especially candlenut shells, is abundant. One way to optimize the use of candlenut shells is to use candlenut shells as fuel for biomass stoves by optimizing the efficiency of biomass stoves. In this study, a biomass stove with primary and secondary airflow was used with a combustion chamber diameter of 200 mm and a height of 340 mm. The biomass waste used is candlenut shells as fuel. The purpose of this study was to explain the increase in the performance of a biomass stove fueled with candlenut shell which is influenced by primary and secondary air velocity. Biomass stove testing includes thermal efficiency, specific fuel consumption, CO and CO2 emissions. The performance test results show that the biomass stove with a primary air velocity of 3.7 m/s, a secondary air velocity of 3.7 m/s has the highest thermal efficiency of 45.77%. The lowest specific fuel consumption is obtained from a biomass stove with a primary air velocity of 1.5 m/s, a secondary air velocity of 1.5 m/s, which is 0.583 kg/hour, and the emission test results show that complete combustion occurs with 0% CO emotion. on all air velocity variables studied.