Claim Missing Document
Check
Articles

Found 2 Documents
Search

Development of INoSIT (Integration Nature of Science in Inquiry with Technology) Learning Models to Improve Science Literacy: A Preliminary studies Amiruddin Takda; Budi Jadmiko; Erman Erman
Jurnal Penelitian Pendidikan IPA Vol. 8 No. 1 (2022): January
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v8i1.957

Abstract

Has successfully created the INoSIT learning paradigm to increase students' science literacy competency. This design aims to integrate information and communication technology (ICT) with inquiry and nature of science (NoS) models to teach scientific literacy to junior high school students using a multi-representation method. The BSCS 5E model (Involvement of Biological Science Curriculum Study, Exploration, Explanation, Elaboration, and Evaluation) and the IBL model (Investigation-based learning) have many phases whose implementation requires many processes. So, the INoSIT model is designed to simplify multiple phases or sub-phases. As a result, IBL (inquiry-based learning) is ineffective and inefficient in terms of learning time. It is also challenging to teach scientific literacy of abstract concepts using this method. The study employs a descriptive analysis method in conjunction with a literature review pattern.  The INoSIT model with the syntax Eliciting, Hypothesis, Testing Hypothesis, Elucidation, and Reflection was created from the results of the investigation of the weaknesses of the BSCS 5E (Biological Science Curriculum Study Engagement, Exploration, Explanation, Elaboration, and Evaluation) and the IBL (Inquiry-based learning) models. To construct students' knowledge of literacy and the study is anticipated to contribute to creativity, originality, and the development of a proclivity for inquiry and research
A Ruppert’s framework: How do prospective teachers develop analogical reasoning in solving algebraic problems? Siti Lailiyah; Kusaeri Kusaeri; Endah Retnowati; Erman Erman
JRAMathEdu (Journal of Research and Advances in Mathematics Education) Volume 7 Issue 3 July 2022
Publisher : Department of Mathematics Education, Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/jramathedu.v7i3.17527

Abstract

It is widely agreed that knowing how prospective teachers develop analogical reasoning in solving problems is important. Some problem solving is domain specific and require particular ways of analogical reasoning skill, therefore this study aims to reveal the development of analogical reasoning and strategies used by prospective teachers. The research design use a qualitative method. As many as 69 mathematics prospective teachers were involved voluntarily to complete algebraic tasks and 12 of them were interviewed to investigate their analogical reasoning and solution strategies. The data analysis used the Ruppert’s framework consisting of four components: structuring, mapping, applying, and verifying. It was found that the first three components were fully performed by the prospective teachers. However, the verifying stage was applied by prospective teachers in different ways. The dominant strategy used was a combined strategy of multiplication and addition. Their strategies varied according to the subjects’ general ability. The more strategies employed in solving problems, the better their analogical reasoning becomes. This implies that instructional designs that will be developed by prospective teachers may vary. Therefore, during their candidature, they should be provided by many solving strategies in problem solving to develop students’ analogical reasoning.