This Author published in this journals
All Journal Rotasi
M. Ivan Satryo
Jurusan Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Jakarta Jl. Cempaka Putih Tengah No 27 Jakarta 10510

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

SIMULASI KARAKTERISTIK ALIRAN DAN SUHU FLUIDA PENDINGIN (H2O) PADA TERAS REAKTOR NUKLIR SMR (SMALL MODULAR REACTOR) Ramadhan, Anwar Ilmar; Setiawan, Indra; Satryo, M. Ivan
ROTASI Vol 15, No 4 (2013): VOLUME 15, NOMOR 4, OKTOBER 2013
Publisher : Departemen Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (721.741 KB) | DOI: 10.14710/rotasi.15.4.33-40

Abstract

Safety is an issue that is of considerable concern in the design, operation and development of a nuclear reactor. Therefore, the method of analysis used in all these activities should be thorough and reliable so as to predict a wide range of operating conditions of the reactor, both under normal operating conditions and in the event of an accident. Performance of heat transfer to the cooling of nuclear fuel, reactor safety is key. Poor heat removal performance would threaten the integrity of the fuel cladding which could further impact on the release of radioactive substances into the environment in an uncontrolled manner to endanger the safety of the reactor workers, the general public, and the environment. This study has the objective is to know is profile contour of fluid flow and the temperature distribution pattern of the cooling fluid is water (H2O) in convection in to SMR reactor with fuel sub reed arrangement of hexagonal in forced convection. In this study will be conducted simulations on the SMR reactor core used sub channel hexagonal using CFD (Computational Fluid Dynamics) code. And the results of this simulation look more upward (vector of fluid flow) fluid temperature will be warm because the heat moves from the wall to the fluid heater. Axial direction and also looks more fluid away from the heating element temperature will be lower.