Claim Missing Document
Check
Articles

Found 12 Documents
Search

Synthesis of Ethylenediamine Modified Chitosan Beads for Biodiesel Production Catalyst: A Preliminary Study Indah Permata Cantika; Muhammad Ali Zulfikar; Handajaya Rusli
Jurnal Kimia Sains dan Aplikasi Vol 26, No 6 (2023): Volume 26 Issue 6 Year 2023
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jksa.26.6.230-237

Abstract

Biodiesel is an alternative fuel that can be easily produced through transesterification with the assistance of a catalyst. Palm oil is a widely utilized feedstock for biodiesel production due to its abundant availability. In this study, a catalyst was synthesized using chitosan (CS) modified with ethylenediamine (EDA) and cross-linked with epichlorohydrin (ECH) for a catalyst heterogeneous in transesterification reaction. The resulting product (CS/EDA/ECH) was characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Its performance was evaluated for biodiesel production. The CS/ECH/EDA catalyst achieved optimal reaction conditions with 5% EDA concentration at room temperature, an oil: methanol ratio of 1:1 (v/v), a total volume of 10 mL of oil and methanol, and a catalyst mass of 0.75 grams. The methyl esters formed corresponded to the fatty acid content in palm kernel, namely methyl palmitate, methyl 9,10-octadecadienoate, methyl oleate, methyl 12,13-tetradecadienoate, and methyl stearate with the highest methyl ester conversion is methyl oleate. The CS/ECH/EDA catalyst exhibited consistent performance after three use cycles.
Synthesis of Molecularly Imprinted Polymers with Magnetite Cores for Ibuprofen Adsorption Halimah Fahri; Muhammad Ali Zulfikar; Muhammad Yudhistira Azis
Jurnal Kimia Sains dan Aplikasi Vol 27, No 1 (2024): Volume 27 Issue 1 Year 2024
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jksa.27.1.28-34

Abstract

Ibuprofen (IBP) is a pollutant that is widely found in aquatic environments due to pharmaceutical waste and the metabolic results of humans who consume the drug. These compounds can cause damage to aquatic ecosystems, genotoxicity, and aquatic toxicity and are harmful to human health. This study aims to selectively adsorb IBP using magnetic molecularly imprinted polymers (MMIPs) synthesized from ibuprofen (IBP) as a template molecule, methacrylic acid (MAA) as a functional monomer, and divinylbenzene (DVB) as a crosslinker with a mole ratio of 1:4:20 in acetonitrile porogen solvent using a bulk polymerization method. Fe3O4 nanoparticles and MMIPs were characterized using X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR), and Scanning Electron Microscope (SEM). IBP adsorption reached optimum conditions at pH 3 with a contact time of 90 minutes and a mass of 25 mg of adsorbent. The adsorption performance of MMIPs for IBP was evaluated by adsorption isotherms and adsorption kinetics. Adsorption of IBP by MMIPs followed the Langmuir adsorption isotherm model with an adsorption capacity of 227.24 mg/g. Kinetic studies showed that the adsorption process followed a pseudo-second-order adsorption kinetic model. MMIPs can adsorb IBP selectively even in the presence of interfering compounds, are easily separated from the solution, and can be used repeatedly with good adsorption ability. Hence, it is efficient and promising for removing IBP from aqueous media.