Claim Missing Document
Check
Articles

Found 5 Documents
Search

Fabrication and Performance Analysis of AZO and MCCO as Thin Film-Thermoelectric Generator Materials Elysa Nensy Irawan; Fahrur Aslami; Aldo Mahendra Putra; Somporn Thaowankaew; Wanatchaporn Namhongsa; Athorn Vora-Ud; Kunchit Singsoog; Tosawat Seetawan4; Melania Suweni Muntini
JOURNAL OF MECHANICAL ENGINEERING MANUFACTURES MATERIALS AND ENERGY Vol. 6 No. 2 (2022): Edisi Desember 2022
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jmemme.v6i2.7317

Abstract

The purpose of this research was to determine the performance of AZO and MCCO materials as constituents of the thin film-thermoelectric generator module. The method used for fabrication is DC Magnetron Sputtering. The electrode material used is Ag and the substrate used is SiO2 glass. The arrangement of the thin film used for the fabrication of the thermoelectric module is P-N-P-N-P-N-P-N-P-N (5 couples of p-n junctions). Based on the test results, the thickness of the thin film type N is 74.72 nm and type P is 90.34 nm. At the highest test temperature (300 oC), the AZO Seebeck coefficient value is -108 µV/K while the MCCO Seebeck coefficient value is 350 µV/K, and the AZO electrical resistivity value is 0.07 Ω.m while the MCCO electrical resistivity value is 0.36 Ω.m. The highest temperature difference given in the test of the AZO and MCCO thin film thermoelectric module is 1.538 °C and the thermoelectric module can produce a voltage of 1,842 ± 0.047 mV, a Seebeck coefficient of 4 µV/K, and an efficiency of 0.44%. Based on this research, it can be concluded that the performance of AZO and MCCO thin film-thermoelectric modules will have better performance at temperatures around 300 - 350 °C.
Analysis of Wind Power Potential in Samiang Bay, Kotabaru, South Kalimantan Fahrur Aslami; Elysa Nensy Irawan; Mohammad Muntaha; Suyatno; Mochamad Sahal
Journal of Renewable Energy and Mechanics Vol. 6 No. 01 (2023): REM VOL 6 NO 01 2023
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/rem.2023.vol6.no01.10763

Abstract

This research was conducted to determine the potential for wind power from the Tamiang Bay area, Kotabaru, South Kalimantan. This study uses data on the average daily wind speed in Tamiang Bay with latitude -4.058883°, longitude 116.050259° obtained from the European Center for Medium-Range Weather Forecasts (ECMWF). Based on the analysis that has been done, the average daily wind speed in Tamiang Bay is 4 m/s for a height of 10 m and 5.98 m/s for a height of 50 m. Through the assumption that using a Gamesa G114-2.5 MW wind turbine with a tower height of 80 m, in one year, the Tamiang Bay area has the potential to produce 2646.58 MWh of wind power. Thus, the Tamiang Bay area is said to be very potential for wind power development.
Fabrication of p-type (MCCO) thin film using DC magnetron sputtering as a preparator for thermoelectric module Elysa Nensy Irawan; Fahrur Aslami; Muhammad Matthew Janotama; Aldo Mahendra Putra; Melania Suweni Muntini; Somporn Thaowankaew; Wanatchaporn Namhongsa; Athorn Vora-Ud; Kunchit Singsoog; Tosawat Seetawan
Journal of Physics: Theories and Applications Vol 7, No 1 (2023): Journal of Physics: Theories and Applications
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/jphystheor-appl.v7i1.66951

Abstract

Based on existing research, thermoelectric efficiency can be improved through material selection. In this study, the material used is CaCO₃ doped with Mn and Co₂O₃ to form CaCo3.5Mn0.5O9 material as a p-type thermoelectric material. The substrate used is glass. The stages in this research are material synthesis, sputtering process using DC Magnetron Sputtering machine to form thin films, and testing. The synthesis process includes grinding, calcination, and sintering. Grinding is done using a Ball Mill machine with a rotation speed of 250 rpm for 5 hours. Furthermore, the calcination step was carried out by heating the sample into a furnace at a temperature of 800°C for 10 hours. Then the sintering process was carried out at a temperature of 850°C for 12 hours. After the synthesis process is complete, enter the sputtering process using a DC Magnetron Sputtering machine for approximately 10 minutes. The gas used in this research is Argon (Ar). After the sputtering process was carried out, several tests appeared, such as the XRD test to determine the type of crystal, the ZEM-3 test to determine the Seebeck coefficient and resistivity, the thickness of the thin film formed, and the power factor test to determine the maximum voltage and power generated by the module formed. Several power factor test results were obtained, consisting of 107 μW/mK² at 100°C, 108 μW/mK² at 200°C, and 332 μW/mK² at 300°C and a thickness of 90.34 nm.
Analyzing the growth and trends of vertical axis wind turbine research: Insight from a bibliometric study Elysa Nensy Irawan; Nuur Wachid Abdul Majid; Liptia Venica; Fahrur Aslami; Goro Fujita
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 14, No 1 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2023.v14.55-61

Abstract

Bibliometric analysis research has been done for vertical axis wind turbine (VAWT). This study aims to determine the growth of VAWT research, the number of VAWT studies in various countries and the most influential authors to find opportunities for research collaboration, and the challenges of future VAWT research. Research data was taken from Scopus in 1801 articles from 1970-2021. The software used for data interpretation was VosViewer 1.6.19 and Tableau Public 2022.2. Based on the analysis, VAWT research has tended to increase from 1970-2021, although there was a decrease from 1987-2006. The country that has conducted the most VAWT research is China, while the author with the highest number of citations is from Italy. The most dominant research topic related to VAWT research is computational fluid dynamics (CFD), which is 50.14 % of the total. A future challenge related to VAWT research is finding a suitable turbulence model for each type of VAWT or finding an airfoil optimization method so that a model with betterperformance is obtained. Opportunities for research collaboration can be carried out with China or an author with the highest number of citations who has expertise in the field of CFD.
Manufacturing of Soil Coefficient Permeability Meter with Data Acquisition System Based on Internet of Things (IoT) Fahrur Aslami; Elysa Nensy Irawan; Melania Suweni Muntini; Dwa Desa Warnana; Ahmad Syahdi Al Khawarizmi
Jurnal Fisika dan Aplikasinya Vol 19, No 2 (2023)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24604682.v19i2.14045

Abstract

Soil permeability coefficient and measuring instrument using a data acquisition system based on Internet of Things (IoT) has been successfully made. The measuring equipment uses the falling head permeameter concept. MPX10GP sensor is used to measure water level. The measurement range is 6-40 cm water level, to obtain + 36 permeability coefficient value of each 1 cm. The data from the subsequent measurement systems is transmitted into the internet network so that it can be accessed by smartphone. Based on the measurement results of three samples, the slopes of Mount Ngantang have a soil permeability coefficient value of 0.0016 cm/s, the Institut Teknologi Sepuluh Nopember (ITS) pond embankment is 0.0005 cm/s, and the Bengawan Solo River embankment is 0.0002 cm/s. These results match with the reference and the difference value is only 2.7%. By using this research method, it is expected to draw up a map of the area that is prone to landslides quickly and accurately.