Claim Missing Document
Check
Articles

Found 5 Documents
Search

Rogowski coil sensor in the digitization process to detect partial discharge Eka Putra Waldi; Asri Indah Lestari; Rudy Fernandez; Syaifa Mulyadi; Yoshinobu Murakami; Naohiro Hozumi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 2: April 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i2.14282

Abstract

This paper presents the construction of a Rogowski Coil sensor with an air core to detect partial discharge using a digital oscilloscope. Two types of sensors are used. The first is the primary sensor winding with back wire, and the second is without back wire, labeled BW and WBW, respectively. The numbers of primary-turn in the sensors are 5, 10, 20, and 40 turns. The performance of the sensors is tested using two types of tests. First, the wave response test with a fixed imitation partial discharge magnitude input is used to select the optimum sensitivity with the lower sampling rate, aims to select the peak or valley value as a magnitude partial discharge value. The second test is using an imitation partial discharge ramp to check the linearity of the sensors. The imitation of the partial discharge inputs is generated by a commercial charge calibrator. The wave response test results show an increase in the number of turns that corresponds to an increase of the sensor output for both sensors in a non-linear trend. In determining the sampling rate, the detection of magnitude in the valley is better than the peak. All sensors act linear toward the imitation partial discharge ramp either in BW or WBW conditions.
Proteksi Motor Induksi Satu Fasa Terhadap Kenaikan Suhu Pada Pengering Maggot Berbasis Panel Surya Asri Indah Lestari; Sofiah Sofiah; Yogie Ragil Pamungkas
Jurnal Ampere Vol. 8 No. 1 (2023): JURNAL AMPERE
Publisher : Universitas PGRI Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31851/ampere.v8i1.11539

Abstract

Electric motors are a very vital need in an industry, household and other needs. Electric motors that are often used in an industry are types of induction motors, where the induction machine is an electric motor that is very easy in its maintenance system so that this motor has the highest rating in its use system. In this study, using a single-phase induction motor as a maggot dryer is useful for making the maggot storage period longer and of high selling value. This study aims to protect the single-phase induction motor in the maggot drying system against temperature increase due to prolonged grinding using the DS18B20 sensor. So that the single-phase induction motor is able to work when the motor is unstable at the time of overcurrent. With the installation of the DS18B20 sensor, the single-phase induction motor will stop automatically when the given temperature setting has exceeded the limit set on the sonoff.  With the protection system of this single-phase induction motor, it can maximize the performance of the electric motor in the maggot drying process and provide convenience in remote motor control and time setting on and off using the Internet of Things (IoT).
Analisis Kedip Tegangan Akibat Gangguan Hubung Singkat pada Sistem Jaringan Distribusi 20 KV di Penyulang Kenari Gardu Induk Seduduk Putih Asri Indah Lestari; Taufik Barlian; Wiwin A Oktaviani
Electrician : Jurnal Rekayasa dan Teknologi Elektro Vol. 13 No. 1 (2019)
Publisher : Department of Electrical Engineering, Faculty of Engineering, Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/elc.v13n1.2092

Abstract

Intisari — Kestabilan ditunjukkan oleh lama terjadinya kedip tegangan, lamanya kedip tegangan menunjukkan tingkat kestabilan tegangan pada sistem tenaga listrik. Salah satu parameter yang menunjukkan kualitas sistem tenaga listrik adalah tegangan. Tujuan dari penelitian ini adalah untuk mengidentifikasi besaran dan lokasi dimana arus gangguan hubung singkat terbesar dan menghitung besaran kedip tegangan di Penyulang Kenari. Kedip tegangan dihitung berdasarkan panjang penyulang yang mengalami gangguan, titik gangguan, impedansi sumber, reaktansi urutan transformator, impedansi urutan penyulang dan ekivalen jaringan, arus gangguan hubung singkat 1 fasa ke tanah, 2 fasa, 3 fasa, tegangan urutan setiap jenis gangguan. Hasil dari perhitungan menunjukkan arus gangguan hubung singkat terbesar untuk setiap jenis gangguan pada panjang total saluran 8,7 km dan 2,89 km berada di titik gangguan 20 persen dari panjang total saluran, sedangkan kedip tegangan terbesar pada panjang total saluran 8,7 km untuk 1 fasa ke tanah dan 3 fasa berada di titik gangguan 100 persen, 2 fasa berada di titik gangguan 80 persen, dan pada panjang total saluran 2,89 untuk 1 fasa ke tanah berada di titik gangguan 80 persen, 2 fasa dan 3 fasa di titik gangguan 100 persen.Kata kunci — Kedip Tegangan, Gangguan Hubung Singkat, Penyulang Kenari.
Pengujian Peluahan Sebagian Menggunakan Rogowski Coil Inti Ferit dan Non Ferit dengan Variaasi Lilitan Sebanyak 10 Lilitan Lestari, Asri Indah; Fadilah, Fadilah
JURNAL SURYA ENERGY Vol 7, No 1 (2022)
Publisher : UNIVERSITAS MUHAMMADIYAH PALEMBANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32502/jse.v7i1.5206

Abstract

Partial Discharge is one of the phenomena that occurs in the electric power system, which is characterized by the phenomenon of heat which will disrupt the insulation system. If this phenomenon is left for a long time, it will disrupt the process of distributing electricity, even stopping the process of distributing electricity. Partial discharge testing can be tested in 2 ways, namely conventional using coupling and conventional using electromagnetic methods, optical methods, acoustic methods, and chemical methods. Moisture testing in part in this study uses a non-conventional method with the electromagnetic method. The electromagnetic method used is the Rogowski Coil with ferrite and non-ferrite cores. Each Rogowski Coil core has an inner diameter of 1.2 cm, an outer diameter of 2.5 cm, a height of 2.5 cm and a total of 10 turns. The results of the partial sweat test show that the non-ferrite core Rogowski Coil responds faster than the ferrite core Rogowski Coil. As for the sensitivity level of the second core used for partial discharge testing, it can be seen that the Rogowski Coil with a ferrite core is more sensitive than the non-ferrite core with a sensitivity value of 11.63%.
Kajian Pengaruh Frekuensi Terhadap Kinerja Pembangkit Listrik Tenaga Picohydro (PLTPh) Miko Ilham Kurniawan; Yosi Apriani; Zulkifli Saleh; Asri Indah Lestari
Jurnal Rekayasa Elektro Sriwijaya Vol. 5 No. 2 (2024): Jurnal Rekayasa Elektro Sriwijaya
Publisher : Jurusan Teknik Elektro Fakultas Teknik Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36706/jres.v5i2.102

Abstract

Penelitian ini menggunakan rancangan picohydro dengan kapasitas 5 kW. Proses konversi energi terjadi pada alat yang disebut generator DC, di mana perubahan beban pada generator DC menyebabkan variasi dalam tegangan yang dihasilkan. Dampaknya adalah terjadinya fluktuasi tegangan dan frekuensi yang tidak stabil. Alat yang dapat mengubah energi elektromagnetik dari bentuk mekanik ke listrik dan sebaliknya disebut generator. generator memiliki kemampuan untuk mentransfer energi listrik dari satu rangkaian ke rangkaian lain melalui penggunaan transformator. Hal ini memungkinkan tegangan untuk berubah sementara frekuensi tetap, dengan bantuan medan magnetik Tujuan utama dari penelitian ini adalah untuk menentukan daya output yang dihasilkan oleh generator dan menganalisi bagaimana frekuensi output daya generator mempengaruhi pengembangan tenaga pikohidro. Metode penelitian yang digunakan terdiri dari empat langkah yaitu: mengumpulkan data, menentukan peralatan dan perlengkapan yang dibutuhkan, menguji alat, dan menganalisis temuan. Pada output akhir, generator menghasilkan frekuensi sekitar 0,01 Hz. Daya output tertinggi generator, menurut hasil pengujian, adalah sekitar 42 watt.