Claim Missing Document
Check
Articles

Found 1 Documents
Search

Evaluating Thresholding-Based Segmentation and Humoment Feature Extraction in Acute Lymphoblastic Leukemia Classification using Gaussian Naive Bayes Nurul Rismayanti; Ahmad Naswin; Umar Zaky; Muhammad Zakariyah; Dwi Amalia Purnamasari
International Journal of Artificial Intelligence in Medical Issues Vol. 1 No. 2 (2023): International Journal of Artificial Intelligence in Medical Issues
Publisher : Yocto Brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijaimi.v1i2.99

Abstract

This study, titled "Evaluating Thresholding-Based Segmentation and HuMoment Feature Extraction in Acute Lymphoblastic Leukemia Classification using Gaussian Naive Bayes," investigates the application of image processing and machine learning techniques in the classification of Acute Lymphoblastic Leukemia (ALL). Utilizing a dataset of microscopic blood smear images, the research focuses on the efficacy of thresholding-based segmentation and Hu moment feature extraction in distinguishing between benign and malignant cases of ALL. Gaussian Naive Bayes, known for its simplicity and effectiveness, is employed as the classification algorithm. The study adopts a 5-fold cross-validation approach to evaluate the model's performance, with particular emphasis on metrics such as accuracy, precision, recall, and F1-score. Results indicate a high precision rate across all folds, averaging approximately 84.13%, while exhibiting variability in accuracy, recall, and F1-scores. These findings suggest that while the model is effective in identifying malignant cases, further refinements are necessary for improving overall accuracy and consistency. This research contributes to the field of medical image analysis by demonstrating the potential of combining simple yet efficient techniques for the automated diagnosis of hepatological diseases. It highlights the importance of integrating image processing with machine learning to enhance diagnostic accuracy in medical applications.