Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : ARMATUR : Artikel Teknik Mesin dan Manufaktur

Studi eksperimen rumah pengering ultra-violet (solar dryer) sistem hibrid tungku biomassa melalui variasi kecepatan aliran udara panas Verdy A. Koehuan; Margaretha Kewa Unarajan; Defmit B.N. Riwu; Muhamad Jafri
ARMATUR : Artikel Teknik Mesin & Manufaktur Vol 4 No 1 (2023): Jurnal Armatur
Publisher : Universitas Muhammadiyah Metro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24127/armatur.v4i1.3296

Abstract

The ultra-violet dryer integrated with the biomass furnace is a drying method with a forced mechanism. In this study, an experimental study was carried out. The drying process of porang tubers uses a hybrid system ultra violet plastic dryer (UV solar dryer) through varying the speed of the inlet air to obtain efficient drying results and porang tuber products. The results showed that the final moisture content of porang tubers after drying per day for each variation of air speed obtained the lowest value of 10.50%bb with the highest drying rate of 0.3373 kg/hour from the assumption of an initial moisture content of 70%bb, which occurs in variations airspeed of 1.8 m/s. while the speed is 1.3 m/s with the lowest drying rate of 0.330 kg/hour with a final moisture content of 11.74%.bb) Drying efficiency for variations in the speed of hot air flow into the hot air duct of the biomass furnace shows the highest value at a speed of 1.3 m/s of 16.76% with the lowest specific energy consumption (KES) of 51975.7 kJ/kg.
Analisis pengaruh kecepatan udara masuk PAWG terhadap volume kondensat, kinerja sistem, Psys dan COP Ben V. Tarigan; Yohanes V. Gere; Muhamad Jafri; Defmit B.N. Riwu; Dominggus G. H. Adoe
ARMATUR : Artikel Teknik Mesin & Manufaktur Vol 4 No 1 (2023): Jurnal Armatur
Publisher : Universitas Muhammadiyah Metro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24127/armatur.v4i1.3432

Abstract

Water is one of the natural resources that is needed for the life of living things. Almost all activities require clean water, both for the metabolism of living things, agriculture and industry and is a major need. So that the availability of clean water sources needs to be maintained and looking for new sources. One source of clean water is atmospheric air which is very abundant. By using a water generator from stable atmospheric air, where the air enters the PAWG system in which there is a thermoelectric which can form a temperature difference in order to convert water into water vapor which then becomes condensate. The PAWG performance tested here is the inlet air velocity with variations of 0.27 m/s, 0.52 m/s and 0.97 m/s. The results show that the inlet air velocity affects the volume of condensate water and the performance of the Psys and COP systems. The higher the air velocity, the greater the volume of condensate water generated and the higher the Psys. But the results are different for COP, where the highest COP occurs at an inlet air speed of 0.52 m/s followed by a speed of 0.27 m/s and the smallest is 0.97 m/s.