Claim Missing Document

Found 8 Documents

Notification Using Telegram to Identify and Determine the Needs of Handling Packaging Dangerous Goods Lukito, Indro; Fahlevi, Wildansyah Reza; Sajati, Haruno
Compiler Vol 8, No 1 (2019): Mei
Publisher : Sekolah Tinggi Teknologi Adisutjipto Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (412.729 KB)


Aviation requires a very high level of security and safety, so that there is no problem that can harm various parties, one of the things that must be considered is about the transportation and handling of Dangerous Goods material. Existing handling system on the flight of dangerous goods systems where outside there is still a lot of risk of handling errors until there is data inaccuracy that can harm various parties, because almost all handling done manually. In addition, the plane does not want to delay and does not want to insert dangerous goods into the plane, so to anticipate the problem conditions, built a system that performs faster, easier and accurate handling, where the system uses PHP programmer language and utilize Telegram API as media Client Server. The built tool explains how to identify packaging, calculations and documents, this tool has reliability with the ability to calculate and identify faster than the manual way with average calculations whose value is significantly different. The values obtained by manually counting which is about 175 Minutes 8 Second or equivalent to 2 Hours 55 Minutes 8 Second and counting with the system  about 94 Minutes 44 Seconds or equivalent to 1 Hour 34 Minutes 44 Seconds, then more than 46% the results are different.
Analisis Kegagalan Fungsi Traffic Alert and Collision Avoidance System Boeing 737-800 Next Garuda Indonesia dan Indentifikasi Penyebab Kegagalan Dengan Metode Fault Tree Indro Lukito; Arif Pambekti; Cyrilus Sukaca Budiono; Riski Kurniawan; Agung Prakoso; Fathkul Mizan
SENATIK STT Adisutjipto Vol 7 (2022): Generation Z's Participation in Aerospace
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/senatik.v7i0.459


Traffic Alert and Collision Avoidance Systems (TCAS) pada pesawat Boeing 737-800 NG memiliki fungsi utama untuk menghindari dan memberi peringatan dari suatu potensi tabrakan antar pesawat di udara. Dengan menganalisis berbagai input dari sinyal balasan pesawat lain dan kemudian memberikan peringatan visual dan/atau aural kepada crew berdasarkan perintah TA maupun TA/RA yang dipilih. Dengan demikian crew bisa mengambil suatu tindakan sehingga potensi kecelakaan bisa dihindari. Pada penelitian ini metode yang digunakan untuk penelitian adalah dengan melakukan observasi langsung dan melakukan penanganan kegagalan kerusakan pesawat Boeing 737-800 NG Garuda Indonesia di Hanggar 2 PT. GMF AeroAsia. Selain itu dilakukan analisis kegagalan pesawat dengan menggunakan metode fault tree analysis. Hasil  troubleshooting dan  fault  tree analysis  ditemukan kegagalan pada TCAS antenna, coaxial cable dan REU yang berpengaruh pada navigasi pesawat. Proses troubleshooting TCAS mengacu pada FIM Boeing 737-800 NG chapter 34-45 task 803 dan 804 dan juga FIM B737-800 NG chapter 23-51 task 803.
Analisis Kerusakan APU Fuel System Pada Pesawat B737-500 Dengan Metode Fault Tree Analysis Arif Pambekti; Riski Kurniawan; Agung Prakoso; Cyrilus Sukaca Budiono; Indro Lukito; Hisyam Musyaffa Arazi
SENATIK STT Adisutjipto Vol 7 (2022): Generation Z's Participation in Aerospace
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/senatik.v7i0.457


APU Fuel System merupakan sistem bahan bakar APU yang secara otomatis memonitor laju aliran bahan bakar untuk mejaga APU pada kecepatan konstan untuk kondisi yang berbeda. Sistem APU Fuel System terpenting pada pesawat saat terbang guna mendistribusi fuel selama melakukan penerbangan. Dalam penelitian ini, metode observasi langsung dan metode fault tree analysis digunakan untuk mengamati dan menganalisis penyebab kegagalan dari APU Fuel System Boeing 737-500 Sriwijaya Air. Hasil dari penelitian tentang permasalahan APU Fuel System Boeing 737-500 Sriwijaya Air adalah terjadi permasalahan pada Fuel Control Unit dengan 14 basic event.
Pendeteksian lightning dan thunderstorm pada area ruang udara bandara Jog/Wahh Adisutjipto International Airport dan Yogyakarta International Airport Indro Lukito; Intan Dyah Pradnjaparamitha; Bambang Sudibya; Denny Dermawan
SENATIK STT Adisutjipto Vol 6 (2020): Keselamatan Penerbangan di masa Pandemi Covid-19 [ISBN 978-602-52742-2-0]
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/senatik.v6i0.413


Daerah Istimewa Yogyakarta have Yogyakarta International Airport and  Adisutjipto International Airport to serve both of civil and military flight mission. Airport must be supported by weather information system for the flight safety. One of any methodes to detect bad weather is using radiosonde to record weather moving in every step of atmospheric level. Using indexes of weather detection can predict the developing weather and presented thunderstorm, lightning and any storm in both of airport area. The significant weather such as thunderstorm and lightning shall be a big danger for the flight which are located n its weather area and must avoid its area. The research focused to operating of radiosonde and how to analyze the becoming weather worst by calculating the weathar indexes of reported radiosonde recording. The result of its analyze is usefull for pilots especially in any steps of the flight, takeoff , approach and landing. Operating of radiosonde equipment which consist of ground equipment, antenna system, Global Positioning System, software of MGPS2, provided any transmission data that can be used to predict possibility bad weather and presented storm. The results of this research are lightning density in Weather Zone A Yogyakarta International Airport is      dA=17,97715 lightning/km2.yr with lightning threat level classified as “MIDDLE”. Lightning density in Weather Zone B Adisutjipto International Airport is dB=9,346163 lightning/km2.yr with lightning threat level classified as “LOW”. There were presented thunderstorm caused by high convection of heat in the atmosphere with possibility presented storm up to 75% in the bad weather condition. 
Anti-Icing Engine Damage Analysis Boeing 737 - 800 Ng With Fault Tree Analysis Method Arif Pambekti; Indro Lukito; Cyrilus Sukaca Budiono; Riski Kurniawan
Journal of Business, Social and Technology (Bustechno) Vol. 3 No. 1 (2022): Journal of Business, Social and Technology (Bustechno)
Publisher : Ridwan Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46799/jbt.v3i1.65


An Anti-icing system is a system that aims to prevent the formation of ice when the plane is in the air. The formation of ice in aircraft is of great concern because an airplane flight will pass through the atmosphere, which will experience the formation of the ice at a certain altitude. The formation of such ice will cause a hazard to the aircraft. So that the ice protection system, namely the anti-icing system, is very concerned so that it is always in a serviceable condition. In this study, direct observation and fault tree analysis were used to determine the cause of failure of the Boeing 737-800 NG anti-ice system engine and anti-icing cowl inlet. The results of the analysis using the fault tree analysis method obtained essential events, namely: actuator fails, electrical connector disconnected, Control Selenoid Trouble, Regulator Trouble, Sense Line Connector Trouble, Engine Fault, Engine Control Trouble, Engine Duct Trouble, Panel Buttom Problem, EICAS Module Problem, No Source Electricity, Negative Electrical Source, Wiring Problem.
Vortex Vol 3, No 1 (2022)
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (495.451 KB) | DOI: 10.28989/vortex.v3i1.1155


Flight Control is a system that functions as a helicopter control center. Failure that occurs in flight control would certainly result inconvenience of the pilot in operating the helicopter, even the movement of the helicopter can out of control causing incident or accident. The continuity of the helicopter operation is affected by the maintenance system applied. One of mode moving system helicopter is yaw control, that could control the nose helicopter to move right and left. Fault Tree Diagram could described  analytical technique, whereby an undesired state of the system is specified (usually a state that is critical from a safety or reliability standpoint). The system then analyzed in the context of its environment and operation to find the solution. Based on the analysis results of failures that occurred in the Sikorsky S76 C ++ helicopter flight control from yaw control aspect in the period of January 2015 to May 2018 with an average use of helicopter’s 2092.05 flight hours, there were 46 failures which caused by yaw control. Based on diagram, there were 4 basic events which caused unschedule maintenance on Sikorsky S76 C ++ helicopter flight control system because of yaw fail control,  so that a replacement or repair was needed for the components that affected to the system failure.
Analisa Pengaruh Arah Dan Kecepatan Angin Saat Take Off Dan Landing Di Bandara Adisutjipto Yogyakarta Suar Ishak; Indro Lukito
Sainstek (e-Journal) Vol. 8 No. 2 (2020)
Publisher : Sekolah Tinggi Teknologi Pekanbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar


Penelitian ini bertujuan untuk mengetahui arah angin Headwind, Tailwind, dan Crosswind yang berpengaruh terhadap penurunan performa pesawat dan gangguan keselamatan penerbangan saat take off dan landing. penelitian ini hanya memfokuskan ke angin berbahaya atau angin crosswind. Penelitian ini diambil di bandara Adisutjipto Yogyakarta di bagian kantor Meteorologi Angkatan Udara. Dari hasil data yang diperoleh peneliti menggunakan program microsoft exel untuk pengolahan data. Sehingga dapat mengetahui besar maksimal crosswind dan besar maksimal rata-rata crosswind yang di peroleh selama perbulan yang di terima oleh pesawat saat take off dan landing baik dari sisi kanan maupun kiri pesawat. Hasil penelitian menunjukan bahwa pada rentang waktu 23.00-03.00 UTC besar maksimal rata-rata crosswind sebesar pada Januari 2015 sebesar 2,9 knot. Rentang waktu 04.00-08.00 UTC dengan besar maksimal rata-rata crosswind pada bulan Januari 2015 sebesar 7 knot. Waktu 09.00-13.00 UTC dengan besar maksimal rata-rata crosswind pada bulan Agustus 2015 sebesar 5,5 knot dan waktu 14.00-17.00 UTC dengan besar maksimal rata-rata crosswind bulan April 2015 sebesar 1,6 knot knot.
Analisis Kapasitas Bandar Udara Adi Soemarmo Boyolali Indro Lukito; Arif Pambekti; Cyrilus Sukaca Budiono
JUMANTARA: Jurnal Manajemen dan Teknologi Rekayasa Vol 2, No 1 (2023): Januari
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (935.376 KB) | DOI: 10.28989/jumantara.v2i1.1462


Maskapai penerbangan saat ini juga mulai menggunakan pesawat berbadan Wide Body seperti Airbus A330-900 Neo. Untuk penerbangan reguler rata-rata pesawat yang digunakan adalah Narrow body, sedangkan untuk Haji dan Umroh adalah Wide Body. Oleh sebab itu pihak bandara perlu mempersiapkan kapasitas dan luas area apron untuk melayani pesawat Wide Body Seperti A330-900 Neo yang saat ini sudah digunakan oleh maskapai penerbangan Lion Air dan Garuda Indonesia. Metode penelitian yang digunakan pada penelitian ini adalah Regresi Linier Sederhana, dimana dengan metode ini didapatkan untuk hasil perhitungan forcasting jumlah pergerakan pesawat tahun 2023 di Bandar Udara Internasional Adi Soemarmo, Boyolali untuk kedatangan adalah 17.636 pergerakan pesawat dan keberangkatan adalah17.627 pergerakan pesawat, sehingga total dari keseluruhan pergerakan pesawat ini adalah 34.903 pesawat udara.Hasil analisis dan pengolahan data jumlah parking stand di area apron Bandar Udara Internasional Adi Soemarmo Boyolali pada tahun 2023 pada jam puncak adalah 12 parking stand untuk pesawat Narrow body dan 3 parking stand untuk pesawat Wide body. Sehingga kebutuhan luasan minimum apron Bandar Udara Interasional Adi Soemarmo Boyolali pada tahun 2023 untuk menampung pesawat Narrow Body dan Wide Body adalah 100.788,355 m2.