Journal of Mechanical Engineering Science and Technology
Vol 6, No 2 (2022)

Investigate the Potential Renewable Energy of Microalgae Spirulina sp Using Proximate Analyzer, SEM-EDX, and Thermogravimetry

Yahya Zakaria (Mechanical Engineering Department, Univesitas Negeri Malang)
Sukarni Sukarni (Mechanical Engineering Department, Universitas Negeri Malang)
Poppy Puspitasari (Unknown)
Nandang Mufti (Universitas Negeri Malang)
Samsudin Anis (Universitas Negeri Semarang)
Anwar Johari (Universiti Teknologi Malaysia)



Article Info

Publish Date
15 Nov 2022

Abstract

Microalgae Spirulina sp which has been cultivated by the Brackishwater Aquaculture Development Center, Situbondo Indonesia were tested for their potential energy performance using proximate analyzer, SEM-EDX, and thermogravimetry. The proximate analyzer showed volatile matter (VM), fixed carbon (FC), moisture, ash content (AC), total sulfur of microalgae Spirulina sp 68.15, 12.57, 11.22, 8.06, and 0.67 (wt%, ar), respectively, and the gross calorific value (GCV) is 4971 kcal/kg (dry basis). SEM-EDX test showed the morphology and chemical content of Spirulina sp. The content of microalgae Spirulina sp is dominated by carbon (C) and oxygen (O), then followed by chlorine (Cl), sodium (Na), potassium (K), sulfur (S), magnesium (Mg), and phosphorus (P). Thermogravimetry pyrolysis test of microalgae Spirulina sp resulted thermogravimetry (TG) analysis and derivative thermogravimetry (DTG) analysis curve, which is divided into three different steps. The moisture of microalga Spirulina sp was vaporized at the first step, started at 27°C, and finished at 173°C with a decomposed mass of about 13.81% of the total initial mass. The second step began at the end of vaporize moisture at about 173°C and ended at around 618 °C. The gasification process occurred in volatile matter content and resulted mass loss of about 57.9% of Spirulina sp total mass. The last step showed the process of gasification of residual substances, started at the end of the volatile matter step, 618°C, and stopped at 995°C with a decomposed mass of 24.6% from total mass.

Copyrights © 2022






Journal Info

Abbrev

jmest

Publisher

Subject

Energy Engineering Industrial & Manufacturing Engineering Materials Science & Nanotechnology Mechanical Engineering

Description

Journal of Mechanical Engineering Science and Technology (JMEST) is a peer reviewed, open access journal that publishes original research articles and review articles in all areas of Mechanical Engineering and Basic ...