cover
Contact Name
Heru Suryanto
Contact Email
jmest.journal@um.ac.id
Phone
+62341588528
Journal Mail Official
jmest.journal@um.ac.id
Editorial Address
3rd floor of H5 Bulding, Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang Jl. Semarang 5 Malang, Jawa Timur, 65145 Telp 0341-588528 / 0341-551312 ext 298
Location
Kota malang,
Jawa timur
INDONESIA
Journal of Mechanical Engineering Science and Technology
ISSN : 25800817     EISSN : 25802402     DOI : 10.17977
Journal of Mechanical Engineering Science and Technology (JMEST) is a peer reviewed, open access journal that publishes original research articles and review articles in all areas of Mechanical Engineering and Basic Sciences
Articles 96 Documents
Properties of Brass under Different Pouring Temperatures in Sand Casting Process Poppy Puspitasari; Avita Ayu Permanasari; Andoko Andoko; Bayu Angga Pratama
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 2 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2283.236 KB) | DOI: 10.17977/um016v1i22017p095

Abstract

This study aimed to determine the toughness of casts produced by the sand casting process at various temperatures against brass, and to investigate the structure contained in the cast madeusing abrass metal mould. This study was experimental research that observed the results of a treatment applied to a specimen group. This pre-experimental study usedthe one-shot case study model in which a group of samples was given treatment. The results showed that the specimen poured at 900°C exhibiteda microstructure consisting ofgood Cu-Zn content, while that at 700°Chad the least Cu content. It indicates that the higher the temperature used for metal casting (brass), the more brittle the cast. The toughness of the materialwas influenced by the alloy composition and the pouring temperature of each specimen; the higher the pouring temperature, the better the treatment of alloy. The photomicrographs indicate that the higher the pouring temperature usedin the metal casting (brass), the lesser the carbon element contained in the material.
Analysis of Biodegradation of Bioplastics Made of Cassava Starch Nanang Eko Wahyuningtiyas; Heru Suryanto
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (7412.168 KB) | DOI: 10.17977/um016v1i12017p024

Abstract

Environmental pollution due to plastic waste taking too long to decompose has become a global problem. There have been numerous solutions proposed, one of which is the use of bioplastics. The use of cassava starch as the main ingredient in the manufacture of bioplastics shows great potential, since Indonesia has a diverse range of starch-producing plants. The aim of the present study is to analyse the effect of glycerol on microbial degradation. This experimental research investigated the use of cassava flour mixed with glycerol plasticizer at various concentrations (0, 2, 2.5, 3%) in the synthesis of bioplastics. The aspects studied were biodegradability, moisture absorption (using ASTM D570), shelf life, and morphological properties (using a camera equipped with a macro lens) and SEM. This study revealed that complete degradation could be achieved on the 9th day. The addition of a large concentration of glycerol would accelerate the microbial degradation process, increase moisture, and extend the shelf life of bioplastics in a dry place.
Blanking Clearance and Punch Velocity Effects on The Sheared Edge Characteristic in Micro-Blanking of Commercially Pure Copper Sheet Didin Zakaria Lubis; Ichsan Ristiawan
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 2 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5547.577 KB) | DOI: 10.17977/um016v1i22017p053

Abstract

This study aims to identify the influences between clearance and punch velocity on the part edge quality of blanked parts. Experiments have been conducted using material copper, punch-die clearance and punch velocity variations. In order to determine the reachable punch-die clearance and punch velocity required for blanking. The quality of the part-edge characteristics shows that higher punch velocity and decreases clearance value can improve the part-edge quality, resulting in smaller burr height and rollover, and a larger shear zone. Furthermore, it could be observed that the part-edge quality improvement when blanking with high punch velocity is much more distinct for stele than for copper. According to blanking theory, this improvement was expected because copper have much higher heat conduction coefficients. Therefore, the heat dissipates faster and the desired stress relief effect does not take place to the same degree as for stele.
Compositional and Structural Evolution during Ball Milling of Ti-based Metallic Glass Powder Yanuar Rohmat
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 2 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (954.813 KB) | DOI: 10.17977/um016v1i22017p100

Abstract

Ti42Zr40Ta3Si7.5Sn7.5metallic glass powder prepared for subsequent consolidation by hot pressing were produced by high energy ball milling from amorphous ribbon and both of the compositional and structural evolution on milled powders were studied using XRD and DSC analyses. By using WC vial and balls, the abrasion of milling media occurred causing WC contamination on < 105 µm milled powder after 2 cycles of milling. Based on DSC analysis, the contamination clearly reduced theΔTxof the alloy up to 48%. On the other hand, the contamination were overcome after milling using SS vial and balls, proved by no crystal peak observed on XRD pattern of all milling cycle levels. However, the thermal stability was noticed to be decreased implying the presence of nanocrystals on the amorphous powder after ball milling and the nanocrystal amount tend to be higher when more milling cycles were applied.
The Strength of Moulding Sand Consisting of a Mixture of Bentonite, Tapioca Flour, and Sago Flour as a New Binder Formula to Improve the Quality of Al-Si Cast Alloy Andoko Andoko; Riana Nurmalasari; M. Alfian Mizar; Retno Wulandari; Poppy Puspitasari; Avita Ayu Permanasari
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (109.133 KB) | DOI: 10.17977/um016v1i12017p032

Abstract

The major factors determining the quality of sand casting products are the base sand and the composition of the sand mould and the binding material. In the foundry industry, the most commonly used binder for creating sand moulds is bentonite. However, the price of bentonite is likely to keep rising. This study aimed at discovering a new binder formula associated with the effect of binder composition i.e. bentonite, tapioca flour, and sago flour on the basis of its mechanical and physical properties. The new formula was expected to be a better binder in the production of sand moulds, resulting in high-quality casting products with minimal defects. Moreover, it is probable to be much more economical than bentonite. This research focused on testing the moulding sand composition with a number of different binders, i.e. bentonite, tapioca flour, and sago flour, each in a different proportion. The mixture of the moulding sand with each of the three binders will be tested in terms of its mechanical properties including compressive, shear, and tensile strength. Based on the test results, sago flour has the highest dry compressive strength of 28.6 N/cm2, whereas bentonite has the highest wet compressive strength, i.e. 11.83 N/cm2 and the highest wet shear strength i.e. 3.16 N/cm2. The binder with the highest dry shear strength is tapioca flour with 18.16 N/cm2. Regarding the tensile strength value, bentonite has the highest wet tensile strength of 0.85 N/cm2, while sago flour has the highest dry tensile strength of 1.73 N/cm2.
Development of a Ferrite-Based Electromagnetic Wave Detector Muhammad Hanish Zakariah; Poppy Puspitasari; Nur Aliza Ahmad
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 2 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (834.09 KB) | DOI: 10.17977/um016v1i22017p061

Abstract

Direct detection of hydrocarbon by an active source using electromagnetic (EM) wave termed Sea Bed Logging (SBL) has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges including sensitivity and lapsed time. Our initial response to this issue is to develop a ferrite-based EM wave detector for Sea Bed Logging (SBL). Ferrite bar and copper rings in various diameters were used as detector 1 (D1). For Detector 2 (D2), toroid added with copper wires in different lengths at the centre of it were used. The first experiment is to determine the inductance and resistance for both detectors by using LCR meter. We obtained the highest inductance value of 0.02530 mH at the ferrite bar when it was paired with a 15 cm diameter copper ring and 0.00526 mH for D2 using a 100 cm copper wire placed at the centre of the toroid. The highest resistivity for D1 was measured at ferrite bar paired with a 15 cm diameter  copper ring and 1.099 Ω when using 20 cm length of copper wire. The second interest deals with voltage peak-to-peak (Vp-p) value for both detectors by using oscilloscope. The highest voltage value at the ferrite bar of D1 was 25.30 mV. While at D2, the highest voltage measured was 27.70 mV when using a 100 cm copper wire. The third premise is the comparison of sensitivity and lapsed time for both detectors. It was found that D1 was 61% more sensitive than D2 but had higher lapsed time than D2.
Analysis of Strength of Glass Fibre Composite Leaf Spring Using Finite Element Method Andoko Andoko; Poppy Puspitasari; Avita Ayu Permanasari
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2635.282 KB) | DOI: 10.17977/um016v1i12017p001

Abstract

Leaf spring, as one of the main components of the suspension system, serves the function of absorbing road shocks and any wheel vibrations, preventing them from being transmitted directly to the vehicle body. Moreover, it can increase the tire traction as well as support the weight of the vehicle and various kinds of external forces. Various studies on the use of composite materials for leaf springs have shown that the strength of composite leaf spring is similar to steel leaf spring with the same load carrying capacity. However, the composite leaf spring has the added advantage of being more lightweight. In fact, composite materials have been preferable for many purposes not only because of its properties but also its lightweight structure and cost effectiveness. The analysis process was carried out using the finite element method by means of ANSYS software to display the output of the analysis being performed. After the output is known, the amount of voltage in conventional, mounted, and progressive spring can be determined. Based on the data analysis, we concluded that conventional straight leaf springs produced a maximum voltage of 653.13 MPa and maximum deflection of 4367.1 mm. The results of the analysis using the finite element method showed that conventional leaf springs (both straight and not) are considered as the most effective model of leaf spring in terms of the power generated.
Effect of Magnetic Field on Diesel Engine Power Fuelled with Jatropha-Diesel Oil Sukarni Sukarni; Partono Partono; Deni Krisdianto; Retno Wulandari
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (300.498 KB) | DOI: 10.17977/um016v1i12017p044

Abstract

Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine’s power would be.
Thermogravimetric and Kinetic Analysis of Cassava Starch Based Bioplastic Nanang Eko Wahyuningtyas; Heru Suryanto; Eddy Rudianto; Sukarni Sukarni; Poppy Puspitasari
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 2 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (696.095 KB) | DOI: 10.17977/um016v1i22017p069

Abstract

Cassava starch based bioplasticfor packaging application has great potency because of the various starch-producing plants in Indonesia.Bioplasticcan contribute to reduce the dependence on fossil fuels andpetroleumthat can solve the environmentalproblem.Thepurpose of this research is to find out the thermal decomposition and the activation energy of cassava starch based bioplastic. The methods weresynthesis bioplastic with cassava starch as main component and glycerol as plasticizer. The thermogravimetry analysis was conducted to obtain the decomposition process mechanism of bioplastic and the heating valueof bioplasticwas measured  using theadiabatic bomb calorimetric.  Data analysis was conducted using  a fitting model approach with an acikalin method to determine the activation energy. The result of thethermogravimetricanalysis showed thatbioplasticisgraduallydecomposedto the moisture, volatilematter, fixed carbon, andash in four stages mechanism. Totally decomposition of bioplastic was 530°C, then all of bioplastic was become the ash. The activation energy in the early and primary thermal decomposition stages are 1.27 kJ/moland 22.62 kJ/mol, respectively and heating valueof bioplastic is 15.16 MJ/kg.
Factors Affecting the Surface Roughness in Sinking EDM Process Ahmad Atif Fikri; Maftuchin Romlie; Aminnudin Aminnudin
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 1, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (301.184 KB) | DOI: 10.17977/um016v1i12017p009

Abstract

The purpose of this study is to gain insights into the surface quality (smoothness) of sinking EDM machining products. Among other non- conventional machining processes, Electrical Discharge Machining (EDM) is the most commonly used process. EDM is a machining process that uses electric sparks created between a workpiece and a tool (electrode). As a manufacturing process, EDM is used for workpieces which have intricate contours and precise dimensions, and works by using electric discharges (sparks) applied in a rapid series of repetitive electrical discharges between the two electrodes, separated by a dielectric fluid, and subject to an electric voltage. Since the tool tends to wear easily and the mould material is very hard and tough, it is necessary to keep within appropriate EDM machining parameters, so that the smoothness of the mould lives up to expectations. Therefore, the parameters of sinking EDM process should be well established to produce the expected results, i.e. the smoothest surface quality and the maximum removal rate. Regarding the electrode materials used, conducting a further experiment is required to achieve the appropriate settings of pulse current, on-time, off-time, servo voltage, and gap width. This experimental study involved several factors: (a) electrode material, (b) magnitude of current, (c) on-time, and (d) quality of surface (smoothness). In this study, the gap between the electrode and the workpiece was controlled at a distance of 40 μm, and with an off-time of 5 seconds, the same dielectric fluid, the same flow speed and the same dielectric immersion, and using the workpiece (AISI P20M steel). Quantitative approaches (t test, one-way, and ANOVA) were applied to analyse the results of comparison test and to determine the best parameter in sinking EDM process.

Page 1 of 10 | Total Record : 96