cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 23 Documents
Search results for , issue "Vol 4, No 9 (2018): September" : 23 Documents clear
Numerical and Experimental Research on Convergence Angle of Wet Sprayer Nozzle Chang Su; Yun-hai Cheng
Civil Engineering Journal Vol 4, No 9 (2018): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1361.177 KB) | DOI: 10.28991/cej-03091132

Abstract

Shotcrete is a popular support method in construction of both ground projects and underground projects, such as tunnels, subways, slopes and roadway, etc. However, at present researches on the influence of nozzle structure parameters on the performance of concrete injection are insufficient. This research focuses on the influence of various parameters of nozzle structure on the evenness and dust generating, and conducts a systematic study on the flow characteristics of the concrete in the nozzle of wet spraying machinery and the quality control law, through a comprehensive research method combining theoretical analysis, numerical simulation and field tests. On the basis of dynamic analysis of the internal flow field of the nozzle, the mathematical model and numerical model of the internal flow field of the nozzle are establishes. Then the simulation calculation of the flow field of the wet spray nozzle is conducted with the FLUENT® software. The fluid’s contour about velocity and phase volume fraction in the nozzle were obtained. On this basis this paper analyzed each phase’s volume fraction of the mixed fluid in the outlet section. The convergent section of the nozzle is tested in the spray concrete impact force distribution system. The results are in good correspondence with the results of theoretical analysis and numerical simulation, which verifies the validity and reliability of the conclusion of numerical simulation. This paper provides the basis for the optimization of nozzle structure, and the improvement of the sprayed concrete construction quality.
Evaluation of the Volume Measurement Optical Method Suitability for Determining the Relative Compaction of Soils Brzeziński, Karol; Maślakowski, Maciej; Liszewski, Paweł
Civil Engineering Journal Vol 4, No 9 (2018): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (944.128 KB) | DOI: 10.28991/cej-03091138

Abstract

The goal of this paper is evaluation of the volume measurement optical method suitability for determining relative compaction of soils. The Structure for Motion technique was utilized in order to achieve the goal by making the three-dimensional models (with Bentley ContextCapture software). Created models were used in volume measurement of the pit-holes. The results were compared with the basic methods: the sand cone test and the water method. The laboratory tests were carried out in two stages. In the first stage, the optical method was tested in similar to operating conditions. Ten holes were made in the soil and the volumes were measured with three different methods. The results were compared and submitted for statistical analysis. Statistical analysis showed the potential of optical method. The second laboratory test focused on repeatability and accuracy of measurement. The volume of the vessel imitating a pit-hole was obtained. The results of the second stage showed that the optical method has better accuracy and lower statistical dispersion compared with sand method. On this basis it can be concluded that optical method of volume measurement has great potential in soil compaction testing.
Lateral Response of a Single Pile under Combined Axial and Lateral Cyclic Loading in Sandy Soil Kahribt, Muqdad Abdallah; Abbas, Jasim M.
Civil Engineering Journal Vol 4, No 9 (2018): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1039.542 KB) | DOI: 10.28991/cej-03091133

Abstract

According to practical situation, there have been limited investigations on the response of piles subjected to combined loadings especially when subjected to cyclic lateral loads. Those few studies led to contradictory results with regard to the effects of vertical loads on the lateral response of piles. Therefore, a series of experimental investigation into piles in dense sand subjected to combination of static vertical and cyclic lateral loading were conducted with instrumented model piles. The effect of the slenderness ratio (L/D) was also considered in this study (i.e. L/D= 25 and 40). In addition, a variety of two-way cyclic lateral loading conditions were applied to model piles using a mechanical loading system. One hundred cycles were used in each test to represent environmental loading such as offshore structures. It was found that under combined vertical and cyclic lateral loads the lateral displacement of piles decreased with an increase in vertical load whereas it causes large vertical displacements at all slenderness ratios. In addition, for all loading conditions the lateral, vertical (settlement and upward) displacements and bending moments increased as either the magnitude of cyclic load or the number of cycles increases. 
The Effect of Soil around the Basement Walls on the Base Level of Braced Framed Tube System Mohammad Sadegh Barkhordari; Mohsen Tehranizadeh
Civil Engineering Journal Vol 4, No 9 (2018): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1141.416 KB) | DOI: 10.28991/cej-03091139

Abstract

According to the 2800 standard, the Iranian code of practice for seismic-resistant design of buildings, the base level refers to the level at which it is assumed that the horizontal movement of the ground is transmitted to the structure. In cases that there are reinforced concrete walls being run by an integrative structure in the underground perimeter, and the surrounding ground is dense and compressed, the base level is considered on the top of the basement wall. In tall structures, due to strong forces and moments at the foot of the structure, examining the location of base level and its movement becomes specially important. The aim of this study was to investigate the impact of changing the properties of the soil around the underground perimeter walls on the base level, taking into account the effects of soil-structure interaction systems. In this regard, the soil-structure system was investigated in two-dimensional models and the location of the base level was identified using shear and drift changes. The results indicated that taking into account the level of the upper stories is possible through performing appropriate walls integrated with the structure even without Compacting the soil around the structure.
Compressive Strength of Steel-Fiber Concrete with Artificial Lightweight Aggregate (ALWA) Meity Wulandari; Tavio Tavio; I G. P. Raka; Puryanto Puryanto
Civil Engineering Journal Vol 4, No 9 (2018): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (689.723 KB) | DOI: 10.28991/cej-03091134

Abstract

In the last decade, there have been many innovations developed to replace the aggregate as material for concrete, particularly the coarse aggregate using the artificial lightweight aggregates a.k.a. ALWA. In the study, the main ingredient used to develop the artificial lightweight aggregates is the styrofoam. Styrofoam has a lightweight characteristic so that it can reduce the density of the concrete. If the density of the concrete can be lighter than the normal-weight concrete then the overall weight of the structure of a building will also be lighter. Thus, the shear force due to the earthquake will also be smaller so that the safety of the building becomes better. The styrofoam used was dissolved with the acetone solution and formed into granules in which the size resembled the coarse aggregate size of about 10 to 20 mm. The styrofoam which has been formed then dried up so that the texture becomes hard. In addition, steel fiber was also used as an added ingredient in concrete mixtures so that the concrete was highly resistant against cracking and was expected to increase the compressive strength of the concrete. ALWA compositions used to replace coarse aggregates were 0%, 15%, 50%, and 100%. While the composition of steel fiber used was 0%, 0.75%, and 1.5% of the total volume of the cylinder. The type of steel fiber used was hooked-end steel fiber with the diameter and the length of 0.8 mm and 60 mm, respectively. The results showed that the concrete with 15% styrofoam ALWA and 1.5% of steel fiber were able to produce optimum compressive strength by 28.5 MPa and the modulus of elasticity by 23,495 MPa. In addition, the use of Styrofoam ALWA as a substitution to the coarse aggregate can reduce the density of concrete as much as 5 to 35%.
Stakeholders’ Perception on Critical Cost Variation Factors in Malaysian Building Projects Samiullah Sohu; Abd Halid Abdullah; Sasitharan Nagapan; Ahsan Ali Buriro; Kaleemullah Kaleemullah
Civil Engineering Journal Vol 4, No 9 (2018): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (573.013 KB) | DOI: 10.28991/cej-03091140

Abstract

Effective cost management is one of the prime requirements for successful completion of construction projects. However, deviation from initially planned cost had been prevalent in construction projects. Cost variation has become a frequent phenomenon in construction projects and Malaysian building projects has no exclusion. This paper aims to establish the critical factors instigating cost variation in Malaysian building projects. Extensive literature review and field survey were two main methods for conducting this study. 34 factors causing cost variation were identified through deep literature review. A questionnaire survey based on identified factors, was carried out among construction stakeholders: clients, consultants and contractors involved in handling of building projects in Malaysia. The collected data was analyzed using SPSS V22 software, which enabled the ranking of factors based on their Mean Value. The results of the survey indicated that (1) fluctuation in cost of materials, (2) improper planning, (3) Incompetent main contractors, (4) poor site management, (5) and client financial problems were top five critical factors causing cost variation in building projects. The inferences drawn in this study can serve as a guide lines for construction stakeholders to achieve effective cost management in building projects.
Motivational Factors for the Implementation of ISO-9001 in Construction Firms of Pakistan Akhund, Muhammad Akram; Memon, Aftab Hameed; Imad, Hafiz Usama; Siddiqui, Fida Hussain; Khoso, Ali Raza
Civil Engineering Journal Vol 4, No 9 (2018): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (663.253 KB) | DOI: 10.28991/cej-03091135

Abstract

Motivating public and private construction firms to implement various management systems in their firms is not a simple job. Especially in Pakistan, management system is a new practice, most of the construction firms are not aware about the benefits of management system and what will be achieved after the implementation of management system. The implementation of ISO 9001 Quality Management System (QMS) in the construction industry is a continuing development method, particularly in small construction firms. On the other hand, the awareness level and readiness level of construction industry firms in Pakistan is yet very low as associated to other countries of Asia and Europe where ISO 9001 initiated. The purpose current study is to determine most responsible factors which will motivate the public and private construction firms of Pakistan to adopt the QMS (ISO 9001). A questionnaire survey was conducted and a total of 337 out of 553 questionnaires were received from public and private construction firms of AZBAGIKHPUSI areas. The analysis results depict 3 significant factors, which will motivate construction firms of Pakistan to implement ISO 9001 are (1) to qualify for bidding (2) to improve quality management system of company (3) to reduce wastage. Hence, based on these results and findings, the construction companies require ISO 9001 certification system and registration with Pakistan Engineering Council (PEC) as a constitution passed for the construction firms then to qualify for the bidding.
Seismic Capacity Assessment of Existing RC Building by Using Pushover Analysis Mohammed Ismaeil
Civil Engineering Journal Vol 4, No 9 (2018): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1088.588 KB) | DOI: 10.28991/cej-03091136

Abstract

The infrastructure, existing in Sudan, is mostly not structured or designed to resist seismic forces accordingly. The study investigated the seismic damage of a 5 storey existing reinforced concrete building in Khartoum, Sudan. Three performance levels were considered in the study, which included immediate occupancy, life safety, and collapse prevention. The gravity push was carried out using force control method and lateral push with displacement control, using SAP2000. Pushover analysis produces push curve, consisting of capacity spectrum, demand spectrum, and performance point. It showed the performance level of building components along with maximum base shear carrying capacity. It has been observed that demand curve intersected the capacity curve between the points B and C at the X direction that is life safety level; and between the points B and C at the Y direction that is life safety and collapse prevention level. Therefore, some building elements are needed to be strengthened.
Effects of Waste Glass Powder on the Geotechnical Properties of Loose Subsoils Siyab Khan, Muhammad; Tufail, Muhammad; Mateeullah, Mateeullah
Civil Engineering Journal Vol 4, No 9 (2018): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (575.659 KB) | DOI: 10.28991/cej-03091137

Abstract

Foundation soils are most affected by different problems when it comes to the loose soil having low shear strength and bearing capacity. Failure of the soil with settlement and shear arises when the shear stresses in the soil exceed the limit. This study is keen to observe the effects of utilization of waste broken glass in the enhancement of Geotechnical properties of soil by performing different laboratory tests. Collection of the soil sample from was concluded from Pabbi, Peshawar, KPK, and Pakistan, which is a low strength soil, are also being called soft soil having low bearing capacity. Furthermore, this particular soil was needed to be enhanced. The physical, chemical and engineering properties of virgin soil were contemplated and the soil was treated with added substances of Glass Powder to stabilize the local soil. Addition of Glass Powder was finished in different proportions that are 4%, 8% and 12% etc. Performance of different tests as Gradation, Specific Gravity, Standard Proctor compaction, Atterberg Limits, Direct Shear, CBR and so forth were done. The results were concluded, based on the Glass Dust stabilization analysis. It was obtained that pulverized glass can be effectively used as a soil stabilizer as mainly the strength characteristics were observed to be valeted. The Results showed that the gradation of soil is narrow from the particle size analysis. Plasticity index (P.I), Liquid limit (L.L) and plastic limit (P.L) were decreased with the addition of Glass powder. The reason behind decreasing P.I is maybe the fact that the Glass powder is cohesionless. Ideal percentage of Glass Powder as a stabilizer is 8%. Such improvements included an achievement of the highest CBR obtained at the 4%, 8% and 12% of powdered glass content. The reason is that the glass is pozzolanic material when blended with soil gives additional strength. The achievement of the increasing rate of the values of angle of internal friction on 4% and 8% and decreasing rate of values obtained at 12% powdered glass substances. Cohesion rate decreases up to 8% and starts increasing at 12%. Maximum dry density increasing as the density of glass is higher than such soil and Optimum moisture content (OMC) is decreasing because of low absorption capacity of glass. The study showed that the best stabilizer for the case study (Pabbi, Peshawar) is the Glass Powder and the optimum dose is 8 %.
Stability Control of Narmab Dam and Sensitivity Analysis of Reliability Coefficients Bahrami Balfeh Teimouri, Atanaz; Bagherzadeh Khalkhali, Ahad
Civil Engineering Journal Vol 4, No 9 (2018): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2363.818 KB) | DOI: 10.28991/cej-03091150

Abstract

Static and quasi-static stability analysis of embankment dams is of vital importance in different stages of dam’s design, construction and operation. The stability can be studied using different techniques which are generally analyzed through Limit Equilibrium Method. Base on this main method, the critical slip surface is selected and the shear strength required to counter the slip at the selected surface is obtained and compared with shear strength of the soil at that surface in order to obtain confidence coefficient. In the present research, the Geo-studio Slope/w software that is a geotechnical software based on finite element method and is widely used in geotechnical field, is employed in order to analyze the stability of the body and foundation of Narmab dam in Golestan province. Narmab dam is a homogeneous embankment dam with a height of 60 m, crest length of 807 m and reservoir volume of 115 million cubic meters. The confidence coefficients provided by the software are compared to the permissible confidence coefficients. Moreover, the sensitivity of the confidence coefficients values to the changes in the effective factors, adhesion and internal friction coefficient, is analyzed. The analyses were performed on 8 values (±5, ±10, ±15, ±20) of c and φ and the obtained values of confidence coefficients were compared. In addition, a comparison was made between different methods of stability analysis. According to the static and quasi-static conditions, Narmab dam is stable in all loading stages (End of Construction, First Impounding and Steady State Seepage and In general, only for the static conditions of the end of construction stage, the sensitivity of adhesion is greater than the angle of internal friction, but, in other conditions and stages, the sensitivity of friction angle has more effects.

Page 1 of 3 | Total Record : 23


Filter by Year

2018 2018


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue