cover
Contact Name
Januar Arif Fatkhurrahman
Contact Email
januarfa@gmail.com
Phone
+62816655080
Journal Mail Official
jurnalrisettppi@gmail.com
Editorial Address
Balai Besar Teknologi Pencegahan Pencemaran Industri Bagian Penelitian dan Pengembangan Jl. Kimangunsarkoro No 6 Semarang, Jawa Tengah, Indonesia 50136
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Riset Teknologi Pencegahan Pencemaran Industri
ISSN : 20870965     EISSN : 25035010     DOI : https://doi.org/10.21771
Jurnal Riset Teknologi Pencegahan Pencemaran Industri is published biannualy by the Balai Besar Teknologi Pencegahan Pencemaran Industri, this is Research and Development Institution under Badan Penelitian dan Pengembangan Industri of Ministry of Industry Republic Indonesia. The Jurnal Riset Teknologi Pencegahan Pencemaran Industri covers a broad spectrum of the science and technology of air, soil, and water pollution management and control while emphasizing scientific and engineering solutions to environmental issues encountered in industrialization. Particularly, interdisciplinary topics and multi-regional/global impacts of environmental pollution, advance material, and energy as well as scientific and engineering aspects of novel technologies are considered favorably. The scope of the Journal includes the following areas, but is not limited to: 1. Environmental Technology, within the area of air pollution technology, wastewater treatment technology, and management of solid waste and harzardous toxic substance 2. Process technology and simulation, technology and/or simulation in industrial production process aims to minimize waste and environmental degradation 3. Design Engineering, device engineering to improve process efficiency, measurement accuracy and to detect pollutant 4. Material fabrication, environmental friendly material fabrication as subtitution material for industry 5. Energy Conservation, process engineering / technology / conservation of resources for energy generation.
Articles 5 Documents
Search results for , issue "Vol. 12 No. 1 (2021)" : 5 Documents clear
PVDF-TiO2 Hollow Fibre Membrane For Water Desalination Elma, Muthia; Mahmud, Mahmud; Huda, Nurul; Assyaifi, Zaini L; Pratiwi, Elsa Nadia; Rezki, Mita Riani; Sari, Dewi Puspita; Rampun, Erdina Lulu Atika; Rahma, Aulia
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 1 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no1.p1-6

Abstract

The clean water crisis is increasing along with the increasing human population. Sea water is one of the largest water sources that can be utilized on the earth. However, the high salt concentration dissolved in seawater must be treated before it can use. Desalination is the directly technology for treating seawater with PVDF-TiO2 hollow fibre membrane via pervaporation process. The aim of this research was to determine the performance of PVDF-TiO2 hollow fibre membrane against variations in feed temperature in the artificial seawater pervaporation process. Method for fabrication membrane is using dry-wet spinning method. The result showed that the highest flux permeat occurred at feed temperature of 60ºC, namely 8.96 kg.m-2.h-1 with salt rejection > 92.86%. The result via SEM showed that of the membrane surface morphology, there is a white spot on the membrane surface is TiO2 because the dope solution is too thick. The PVDF-TiO2 hollow fiber membrane in this research is can be applied for seawater pervaporation.
Online Monitoring of Effluent Quality for Assessing the Effect of Wastewater Treatment Plant to Discharge into the Receiving Water: a review Andri Taufick Rizaluddin; Henggar Hardiani
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 1 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no1.p7-19

Abstract

In general, industries that use water in their production process will produce wastewater which usually contains a lot of polluting contaminants. It will affects the surrounding environment by contaminating the water bodies, which will adversely affect the health life of all living beings. Pollution that occurs in the some rivers in Indonesia has begun to raise concern for Indonesian Goverment. Some of the river locations already have heavy poluted status. The pollution is mostly caused by industrial waste and domestic waste along the river. Treatment plants for wastewater effluents are mandatory for any industry which discharges their wastewater effluents into the environment. Information on monitoring the quality of industrial wastewater is very important to be perceived by examining changes in water quality condition that are getting better or worse. It is necessary to develop a system that monitors the condition of industrial wastewater. Industrial wastewater monitoring is a device system that collects real time data. Online monitoring technology is one part that plays an important role in supporting activities to control marine environmental pollution. Real‐time monitoring of wastewater quality remains an unresolved problem to the wastewater treatment industry. One of the problem in most industries in Indonesia is that the operational and performance of wastewater treatment plants (WWTP) are still not optimal, and need to be improved. The application of industrial technology concept 4.0 and automation systems in the industry is expected to improve the WWTP supervision process which has advantages such as reducing down time, reducing consumption of raw materials, reducing the energy used, increasing productivity, improving product quality and making efficient use of resources and processes, so as to reduce industrial operating costs.
Removal of Total Coliform and TSS for Hospital Wastewater by Optimizing the Role of Typha Angustifolia and Fine Sand-Gravel Media in Horizontal Sub Surface Flow Constructed Wetland Akhmad, Abdul Gani
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 1 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no1.p20-31

Abstract

This study aims to evaluate the performance of a pilot-scale HSSF-CW utilizing Typha angustifolia and fine sand-gravel media in removing total coliform and TSS from hospital wastewater. Three pilot-scale HSSF-CW cells measuring 1.00 x 0.45 x 0.35 m3 were filled with gravel sand media with a diameter of 5 - 8 mm as high as 35 cm with a submerged media depth of 0.30 m. There were three treatments, namely the first cell (CW1) without plants, the second cell (CW2) was planted with a density of 12 Typha angustifolia plants, and the third cell (CW3) was planted with a density of 24 Typha angustifolia plants. The three HSSF-CW cells received the same wastewater load with total coliform and TSS contents of 91000 MPN / 100 mg and 53 mg / L, respectively, with Hydraulic Loading Rates 3,375 m3 per day. Wastewater was recirculated continuously to achieve the equivalent HSSF-CW area requirement. The experimental results show that the performance of CW3 is more efficient than CW1 and CW2 in total coliform and TSS removal for hospital wastewater. The pollutant removal efficiency at CW3 reached 91.76% for total coliform with one day hydraulic retention time and 81.00% for TSS with two days of hydraulic retention time. This study concludes that the HSSF-CW system using sand-gravel media with a diameter of 5 - 8 mm with a submerged media depth of 0.30 m and planted with Typha angustifolia with a tighter spacing proved to be more efficient in removing total coliform and TSS from hospital wastewater.
Potential Activated Carbon of Theobroma cacao L. Shell for Pool Water Purification in Politeknik Negeri Padang Yetri, Yuli
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 1 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no1.p32-38

Abstract

Research has been carried out to improve the quality of the yellow pool water. The water is used as a source of clean water for the academics of the Politeknik Negeri Padang, so it needs to be improved in accordance with the quality standards of clean water, and is suitable for daily use. The adsorption process was carried out using activated carbon of Theobroma cacao L. shells which was carbonated at 400oC for 1 hour and activated with H3PO4. Characterization of functional groups using Frontier Transform Infra Red (FTIR), and morphology of surface using Scanning Electron Microscopy (SEM). The quality of clean water standard analyzed is turbidity, Total Dissolved Solids (TDS), color, Total Suspended Solids (TSS), and Fe content. Functional group analysis exhibits that the activated carbon produced has a pattern of absorption with O-H, C-H, and C-O bond types. At the optimum condition of the activation process, a good adsorbent is absorbed in pool water purification at a flow rate of 5 mL/min with a mass of 2 grams. The analysis showed an efficiency decrease in turbidity value of 67%, Total Dissolved Solids (TDS) 71%, Color 97%, Total Suspended Solids (TSS) 86%, and Fe content 38%. Surface morphology of activated carbon showed the presence of pore cavities, and after the filtration process the cavities became saturated. This shows that there has been an absorption by activated carbon, so that the water becomes clear. Activated carbon of Theobroma cacao L.shell is very effective in the process of purifying pool water into clean water and fulfilling clean water standards, so it is suitable for are used.
Modelling Green Production Process in the Natural Dyes Batik Industry Using Cleaner Production Options Siti Ajizah
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 1 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no1.p39-54

Abstract

Sustainable production policy has encouraged batik industry to switch synthetic dyes to natural dyes. However, the production process still brings negative impacts on the environment as well as on humans. In order to solve this problem, the batik industry needs to develop green production model using cleaner production options. The purpose of this research is to design green production model for greening the natural dyes batik industry. The research was conducted in the natural dyes batik industry “Mbah Guru”. Mbah Guru batik industry is located in Lamongan, East Java. The research used a feasibility study by using Pay Back Period (PBP). The last decision making of cleaner production options was used Bayes Method to assess and determine cleaner production options based on technical, economical, and environmental aspects. The result showed that all of cleaner production options are feasible. "Fertilizer making from natural dyes" had the shortest payback period of 0,057 years and "two steps washing for all washing processes" had the longest payback period of 0,92 years. The highest criterion weight was the environmental aspect of 0.41 and followed by the economical aspect of 0.35. “Natural dyes wastewater reusing” became the most priority of the cleaner production options. The batik industry will be more profitable if it is able to properly implement the recommended process improvements so that the negative impacts, both the environment and on humans, can be minimized.

Page 1 of 1 | Total Record : 5