cover
Contact Name
Muji Setiyo
Contact Email
muji@unimma.ac.id
Phone
+62293326945
Journal Mail Official
mesi@unimma.ac.id
Editorial Address
Universitas Muhammadiyah Magelang, Jl. Bambang Soegeng KM. 4 Mertoyudan Magelang, Telp/Faks : (0293) 326945
Location
Kab. magelang,
Jawa tengah
INDONESIA
Mechanical Engineering for Society and Industry
ISSN : -     EISSN : 27985245     DOI : https://doi.org/10.31603/mesi
Aims Mechanical engineering is a branch of engineering science that combines the principles of physics and engineering mathematics with materials science to design, analyze, manufacture, and maintain mechanical systems (mechanics, energy, materials, manufacturing) in solving complex engineering problems. Therefore, this journal accommodates all research documentation and reports on technology applications in society and industry from various technology readiness levels (TRL): basic, applied, and report of technology application. Basic - theoretical concepts of natural science, application of engineering mathematics, special and unique materials science, theoretical principles of engineering design, production, energy conversion, or industrial mechatronics/automation that support mechanical engineering analysis with a sustainable engineering perspective. Applied - thermal-mechanical design (energy, applied mechanics, material selection, material strength analysis) to support sustainable design and engineering capabilities. Report of technology application - the impact of technology on economic and social, ecological principles, sustainability principles (sustainability), communication techniques, and factual knowledge that contribute to solving complex and sustainable engineering problems. Scope Aerodynamics and Fluid Mechanics This scope includes boundary layer control, computational fluid dynamics for engineering design and analysis; turbo engines; aerodynamics in vehicles, trains, planes, ships, and micro flying objects; flow and induction systems; numerical analysis of heat exchangers; design of thermal systems; Wind tunnel experiments; Flow visualization; and all the unique topics related to aerodynamics, mechanics and fluid dynamics, and thermal systems. Combustion and Energy Systems This scope includes the combustion of alternative fuels; low-temperature combustion; combustion of solid particles for hydrogen production; combustion efficiency; thermal energy storage system; porous media; optimization of heat transfer devices; shock wave fundamental propagation mechanism; detonation and explosion; hypersonic aerodynamic computational modeling; high-speed propulsion; thermo-acoustic; low-noise combustion; and all the unique topics related to combustion and energy systems. Design and Manufacturing This scope includes computational synthesis; optimal design methodology; biomimetic design; high-speed product processing; laser-assisted machining; metal plating, micro-machining; studies on the effects of wear and tear; fretting; abrasion; thermoelastic. This scope also includes productivity and cycle time improvements for manufacturing activities; production planning; concurrent engineering; design with remote partners, change management; and involvement of the Industry 4.0 main area in planning, production, and maintenance activities. Dynamics and Control The dynamics and control group includes aerospace systems; autonomous vehicles; biomechanics dynamics; plate and shell dynamics; style control; mechatronics; multibody system; nonlinear dynamics; robotics; space system; mechanical vibration; and all the unique topics related to engine dynamics and control. Materials and Structures The scope of this field includes composite fabrication processes; high-performance composites for automotive, construction, sports equipment, and hospital equipment; natural materials; special materials for energy sensing and harvesting; nanocomposites and micromechanics; the process of modeling and developing nanocomposite polymers; metal alloys; energy efficiency in welding and joining materials; vibration-resistant structure; lightweight-strong design; and all the unique topics related to materials and construction. Vibrations, Acoustics, and Fluid-Structure Interaction This group includes nonlinear vibrations; nonlinear dynamics of lean structures; fluid-structure interactions; nonlinear rotor dynamics; bladed disc; flow-induced vibration; thermoacoustic; biomechanics applications; and all the unique topics related to vibrations, acoustics, and fluid-structure interaction.
Articles 6 Documents
Search results for , issue "Vol 1 No 2 (2021)" : 6 Documents clear
Recent Progress on the Production of Aluminum Oxide (Al2O3) Nanoparticles: A Review Adzra Zahra Ziva; Yuni Kartika Suryana; Yusrianti Sabrina Kurniadianti; Asep Bayu Dani Nandiyanto; Tedi Kurniawan
Mechanical Engineering for Society and Industry Vol 1 No 2 (2021)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1798.864 KB) | DOI: 10.31603/mesi.5493

Abstract

This study aims at discussing several methods to produce aluminum oxide (Al2O3) synthesis methods along with the advantages and disadvantages of each method used. In general, several methods are available: (1) precipitation, (2) combustion, (3) sol-gel, (4) wet chemical, (5) synthesis in supercritical water conditions, (6) microwave, (7) mechanochemical, and (8) hydrolysis, and the most efficient method for synthesizing Al2O3 is precipitation because it is facile and the simplest method (compared to other methods), can be proceeded using inexpensive raw materials, produces less pollution, and has several advantages: high purity product, high thermal stability, nearly homogeneous nanoparticle in size, and control desired particle size. The results of the study help to provide comparisons in producing various Al2O3 synthesis methods.
Data on Emission Factors of Gaseous Emissions from Combustion of Woody Biomasses as Potential Fuels for Firing Thermal Power Plants in Nigeria Francis Boluwaji Elehinafe; Oyetunji Babatunde Okedere; Queen Edidiong Ebong-Bassey; Jacob Ademola Sonibare
Mechanical Engineering for Society and Industry Vol 1 No 2 (2021)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (643.676 KB) | DOI: 10.31603/mesi.5548

Abstract

This work generated data on the emission factors of air emissions from combustion of woody biomasses collected from southwest, Nigeria. This was with a view to finding their potentials as sustainable and environmentally friendly fuels for firing thermal power plants compared to coals. The data on heating values and elemental contents (carbon, sulphur and nitrogen) responsible for gaseous emissions in the 100 woody biomasses were collected from the previous results of this work to determine the gaseous emission factors on the expected condition of complete combustion. The current results showed that the CO2 emission factors ranged from 0.0147 kg/(MJ/kg) for Ficus mucuso to 0.1499 kg/(MJ/kg) for Spondias mombin, SO2 emission factors ranged from 0.0000000 kg/(MJ/kg) for Pterygota macrocarpa, Irvingia grandifolia, and fifteen others, to 0.0011341kg/(MJ/kg) for Khaya ivorensis, while NO2 emission factors ranged from 0.0000000 kg/(MJ/kg) for Citrus medica to 0.0035824 kg/(MJ/kg) for Ficus carica. Considering the minimal emissions from biomasses compared to coal species, serious political will is needed on the part of the Nigerian government to propagate these biomasses for fuels in firing the thermal plants in the country.
A Report on Metal Forming Technology Transfer from Expert to Industry for Improving Production Efficiency Khoirudin Khoirudin; Sukarman Sukarman; Murtalim Murtalim; Fathan Mubina Dewadi; Nana Rahdiana; Amin Rais; Amri Abdulah; Choirul Anwar; Aries Abbas
Mechanical Engineering for Society and Industry Vol 1 No 2 (2021)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (795.464 KB) | DOI: 10.31603/mesi.5613

Abstract

This article reports on technological mastery assistance in three small metal forming industries in Indonesia. Problems in the blangking and piercing separately process caused increased production time which resulted in inefficiency cost. Therefore, the expert team aided in metal forming technology through participatory action research (PAR) methods and experimental methods through reverse engineering for several products. The PAR method involves optimal contribution and participation from the industry. Assistance in mastering technology in small metal-forming industries reduces the manufacturing process from seven to three stages, increasing efficiency. The press machine's tonnage capacity must balance with the force blanking/piercing requirement. The minimum press machine requirement is 6.7 tons, and based on the availability of existing press machines, the expert team recommends a 20-ton capacity press machine. Total efficiency can be further increased by implementing full progressive die technology by combining piercing, blanking, and bending processes.
Emphasis of Weld Time, Shielding Gas and Oxygen Content in Activated Fluxes on the Weldment Microstructure Surinder Tathgir; Dinesh W Rathod; Ajay Batish
Mechanical Engineering for Society and Industry Vol 1 No 2 (2021)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1631.392 KB) | DOI: 10.31603/mesi.5903

Abstract

The activated-TIG (A-TIG) process is a recognised process for achieving higher depth-of- penetration (DoP) and it could be used for various stainless-steel grades welding. The oxygen content of oxide based activated fluxes provide the extra heat during decomposition of flux and result into deep penetration. This study reveals the effect of short weld time of 2 sec in stationary arc, shielding environment (Ar and Ar + 2.5 % H2) and an effect of oxygen element in activated flux (CrO3 and SiO2) on the microstructure and weld metal micro-hardness. Use of hydrogen mix shielding gas during A-TIG process has significant impact on the dilution rate, grain size and dendrite arm spacing. The fraction of oxygen in the flux and the presence of silicon in SiO2 flux play a significant role in achieving higher DoP. To evaluate the impact of different shielding environment on grain growth, the samples were investigated with weld pool morphology, depth of penetration, weld chemistry, optical microscopy and SEM analysis. The extra heat produced due to oxygen fraction in activated flux and H2 induced shielding have been quantified in the study. The ferrite and austenite grain growth as well as the dendrite arm spacing found to be increased due to presence of H2 in shielding gas.
The Effect of Excess Heat Utilization on the Production Cost of Cement Olayide R. Adetunji; Montfort C. Ogbuokiri; Olawale U. Dairo; Olanrewaju B. Olatunde; Iliyas K. Okediran
Mechanical Engineering for Society and Industry Vol 1 No 2 (2021)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (598.265 KB) | DOI: 10.31603/mesi.5987

Abstract

Industrial excess heat is a largely untapped resource that has the potential for external use that would be beneficial to the cement industry. Therefore, this work studied the excess heat utilization for the optimization of production cost in a cement plant within a period of three years. The study of plant layout in the selected plant in Nigeria (Ewekoro II Cement Plant of 200 tonnes/hour) was carried out to identify areas where excess heat is generated. The temperature and static pressure of precalciner, kiln, and cyclone were taken using a temperature probe, pitot tube, digital manometer, and light-emitting diode temperature reader. These parameters were used to obtain the mass flow rate and heat transfer needed for the heat energy analysis of the system. The kiln was maintained at constant tonnage per hour through a clinker truck weighed using the weighbridge. The result showed that the heat generated from the kiln was 577,640,260 MJ/hr. through excess air draft of 780,000 m3/hr (89.4%) at 250 °C and induced draft fan of 900,000 m3/hr at 350 °C. The result showed that excess heat can be utilized in pre-heater and air quenched cooler boilers, steam turbines and auxiliaries, and generators. The total estimated heat that could be saved amounted to 344,648,250 MJ with a total annual capacity of 2.25 million tonnes of cement. A saving of over two billion dollars could be achieved in production cost per year.
The Role of Composites for Sustainable Society and Industry Ragil Widyorini; Nasmi Herlina Sari; Muji Setiyo; Gunawan Refiadi
Mechanical Engineering for Society and Industry Vol 1 No 2 (2021)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.656 KB) | DOI: 10.31603/mesi.6188

Abstract

In the last few decades, the global community's demands are getting stronger for more environmentally friendly materials. Natural fiber reinforced composites have been applied as reinforcement in concrete, sound absorbers, buildings, aeronautical, aerospace, sanitation, electronics, bridge decks, interior, automotive, sports equipment and furniture industries, modular structures, and others. Natural fibers are receiving high attention due to their sustainability, environmental friendliness, low density, low cost, low abrasiveness, renewability, and biodegradability, as well as contributing to the consumption of CO2 gas. As reported by many researchers, Indonesia has several natural resources for natural fibers such as bark fiber, leaf fiber, seed/fruit fiber, grass fiber, stalk fiber, and wood fiber.

Page 1 of 1 | Total Record : 6