cover
Contact Name
Tulus Burhannudin Sitorus
Contact Email
jurnaldinamis@gmail.com
Phone
+6281361719718
Journal Mail Official
jurnaldinamis@gmail.com
Editorial Address
Faculty of Engineering, University of Sumatera Utara J17 Building 3rd Floor Mechanical Engineering Department Jl. Almameter Kampus USU Medan Telp.061-8213250, Fax 061-8213250
Location
Unknown,
Unknown
INDONESIA
Dinamis
Published by TALENTA PUBLISHER
ISSN : 02167492     EISSN : 28093410     DOI : https://doi.org/10.32734/dinamis
Focus and Scope Dinamis Journal is a national electronic journal as a means to publish scientific works in Mechanical engineering and other relevant fields. This journal has strengths and focuses on the sub-fields of energy conversion, structural materials and materials engineering, production processes, and maintenance systems which are all part of mechanical engineering science. This journal is managed by the Department of Mechanical Engineering, Faculty of Engineering, University of Sumatera Utara. Scientific works published in the Dinamis Journal are the results of research, both experimental, literature reviews, and simulations and contribute significantly to the development of science and technology. The Dinamis Journal publishes scientific papers in the field of Mechanical engineering related to the following fields of study: Experimental and Computational Mechanical Systems Solar Energy Fuel Cell Noise and Vibration Alloy and Processing
Articles 8 Documents
Search results for , issue "Vol. 4 No. 4 (2016): Dinamis" : 8 Documents clear
ANALISA DAERAH ANTAR MUKA HASIL PROSES CLADDING MATERIAL STAINLESS STEEL TERHADAP BAJA KARBON MENENGAH Bresman P Siboro; Syahrul Abda; Mahadi; Farida Ariani; M. Sabri; Bustami Syam
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1487.416 KB) | DOI: 10.32734/dinamis.v4i4.7112

Abstract

Penggunaaan Baja karbon menengah dalam dunia industri masih sangat banyak digunakan. Namun dalam aplikasi tertentu, seperti peralatan otomotif, konstruksi dekat laut, tangki tekanan tinggi, Baja karbon menengah perlu dilapis dengan stainless steel agar dapat digunakan sesuai aplikasinya dan masa pakai yang tahan lama. Proses yanag diteliti adalah proses cladding yaitu ikatan bersama-sama dari dua logam berbeda. Cladding dapat dicapai dengan dua logam, melalui logam induk dan logam pelapis serta menekan lembaran bersama dibawah tekanan dan temperatur tinggi (850 0C). Tujuan penelitian adalah untuk mendapatkan nilai kekerasan dan mengamati difusi yang terjadi pada struktur mikro di daerah antar muka. Pengujian yang dilakukan adalah uji kekerasan dan uji struktur mikro. Nilai kekerasan pada daerah antar muka pada masing – masing varian waktu penahanan 20 menit, 40 menit dan 60 menit ditemukan peningkatan nilai kekerasan secara berturut – turut yakni 113,5 BHN, 125,6 BHN dan 128,30 BHN. Analisa struktur mikro waktu penahanan 20 menit terjadi difusi, tetapi belum sepenuhnya disepanjang daerah antar muka, pada waktu penahanan 40 menit difusi yang terjadi disepanjang daerah antar muka, dan pada waktu penahanan 60 menit difusi yang terjadi disepanjang daerah antar muka. kesimpulan yang diperoleh adalah semakin lama waktu pemanasan pada proses cladding, nilai kekerasan yang diperoleh akan semakin tinggi. Pada struktur mikro, semakin lama waktu penahanan pemanasan difusi terjadi disepanjang daerah interface.
ANALISA PENGARUH VARIASI KOMPOSISI TERHADAP KEKUATAN TARIK STATIK DAN IMPAK KOMPOSIT BERPENGUAT SERAT ROCKWOOL PADA PESAWAT TANPA AWAK Fauzi K. P.; Ikhwansyah Isranuri; M. Sabri; Marragi M; Tugiman; Mahadi; Bustami Syam
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (937.439 KB) | DOI: 10.32734/dinamis.v4i4.7114

Abstract

Penggunaan komposit ringan sangat penting dalam meningkatkan kemampuan terbang Pesawat Tanpa Awak (Unmanned Aerial Vehicle = UAV) di udara. Salah satu keuntungan komposit diperkuat serat adalah komposit lebih ringan daripada logam dan relatif kuat. Tujuan penelitian ini adalah untuk memperoleh komposisi yang memiliki sifat mekanis terbaik dari bahan komposit berpenguat serat rockwool untuk aplikasi pembuatan pesawat tanpa awak. Material dibuat dengan bahan dasar resin polyester BQTN 157 EX, serat rockwool sebagai penguat, dan katalis MEKP. Kajian hanya dilakukan dengan variasi komposisi rockwool-polyester (4-96)%, (8-92)%, (12-88)%. Pembuatan komposit dilakukan dengan metode hand lay-up. Pengujian yang dilakukan adalah uji tarik statik dan uji impak charpy. Dari pengujian tarik statik yang dilakukan, didapatkan bahwa semakin banyak kadar rockwool pada komposit, maka kekuatan tarik juga akan meningkat. Kekuatan tarik maksimum terbesar dimiliki komposisi 12% rockwool yaitu sebesar 31,169 MPa, dengan regangan sebesar 1,56 % dan modulus elastisitas sebesar 3133,424 MPa. Dari pengujian impak, didapatkan nilai kekuatan impak terbesar dimiliki komposisi 4% rockwool yaitu sebesar 0,003733 J/mm2, sementara komposisi 12% rockwool memiliki kekuatan impak sebesar 0,002489 J/mm2, dan komposisi 8% rockwool memiliki kekuatan impak terendah yaitu 0.002267 J/m2. Dan didapat komposisi rockwool-polyester (12-88)% memiliki sifat mekanis terbaik diantara tiga komposisi yang diteliti untuk pesawat tanpa awak.
PENGARUH VARIASI DIAMETER RONGGA TERHADAP KOEFISIEN SERAP BUNYI PADUAN ALUMINIUM-MAGNESIUM BERONGGA Indra N. T.; Ikhwansyah Isranuri; Syahrul Abda; Tugiman; Farida Ariani; Alfian Hamsi
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1176.06 KB) | DOI: 10.32734/dinamis.v4i4.7117

Abstract

Bunyi memiliki banyak manfaat untuk kehidupan manusia dan makhuk lainnya. Akan tetapi bunyi yang berlebihan atau yang disebut kebisingan akan sangat menggangu dan akan menimbulkan kerugian bagi manusia. Pengendalian kebisingan sangat diperlukan untuk menciptakan lingkungan yang nyaman bebas dari kebisingan. Pengendalian kebisingan dapat dilakukan dengan berbagai teknik. Salah satu teknik pengendalian kebisingan itu adalah dengan menyerap bunyi. Terdapat banyak material teknik yang dapat digunakan sebagai bahan penyerap bunyi, salah satu contohnya adalah aluminium. Pada penelitian ini magnesium dipadukan dengan aluminium dengan cara pengecoran berongga dengan diameter rongga berbeda disetiap spesimen dan kemudian dilakukan pengujian serap bunyi dengan metode tabung impedansi sehingga dapat diketahui bagaimana pengaruhnya terhadap sifat penyerapan bunyi dari paduan aluminium-magnesium. Hasil penelitian ini menunjukkan bahwa koefisien serap bunyi tertinggi pada paduan aluminium-magnesium dengan diameter rongga 3 mm dan frekuensi yang paling baik diserap oleh material ini adalah 1500 Hz.
SIMULASI STATIK DAN DINAMIK PARKING BUMPER REDESAIN MENGGUNAKAN SOFTWARE ANSYS 12.0 Reyhan Almer; Bustami Syam; Ikhwansyah Isranuri; M. Sabri; Marragi M; Tugiman; Syahrul Abda
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (958.441 KB) | DOI: 10.32734/dinamis.v4i4.7118

Abstract

Penelitian yang telah dilakukan terhadap desain parking bumper memperlihatkan bahwa desain terbaik berbentuk trapesium padat [2]. Namun dalam pengujian yang dilakukan [5] memperlihatkan bahwa desain trapesium padat masih memiliki kelemahan yaitu tidak mampu menahan kecepatan mobil diatas 20 km/jam saat menuju parkir. Bila kecepatan mobil saat parkir lebih tinggi maka akan menyebabkan parking bumper mengalami kerusakan. Oleh sebab itu perlu dilakukan modifikasi desain (redesain) untuk mendapatkan bentuk desain yang lebih maksimal. Tujuan dari penelitian ini adalah melakukan pemodelan berupa redesain parking bumper dengan geometri trapesium sama sisi yang memiliki dimensi panjang 250 mm, lebar 200 mm, dan tinggi 130 mm. Selanjutnya meneliti hasil pengujian statik dan dinamik pada salah satu sisi miring melalui simulasi menggunakan program Ansys 12.0 Workbench sehingga diperoleh tegangan, regangan dan total deformasi. Berdasarkan uji statik ditentukan modulus elastisitas maksimum redesain parking bumper dan berdasarkan uji dinamik ditentukan gaya impak maksimum yang sanggup diterima parking bumper sesaat sebelum mengalami kerusakan. Terakhir membandingkan hasil penelitian yang dilakukan dengan penelitian sebelumnya [5]. Hasil pengujian statik dan dinamik pada salah satu sisi miring redesain parking bumper melalui simulasi menggunakan program Ansys 12.0 Workbench diperoleh hasil sebagai berikut: (1). Telah berhasil dilakukan redesain parking bumper dengan geometri berupa trapesium berongga yang diisi dengan bahan beton (concrete) dengan sisi miring berbentuk radius, memiliki dimensi panjang 250 mm, lebar 200 mm dan tinggi 130 mm. (2). Hasil simulasi statik dengan tekanan sebesar 2500 MPa selama selang waktu 240 s (4 menit), diperoleh tegangan rata-rata 6.909,9 Mpa, tegangan maksimum 8.884,2 MPa, regangan rata-rata 0.62812 m/m, regangan maksimum 0,80765 m/m, total deformasi rata-rata 0,034563 m, total deformasi maksimum 0,044438 m, dan modulus elastisitas maksimum 11.000 MPa. (3). Hasil simulasi dinamik dengan kecepatan jatuh bebas sebesar 10 m/s yang setara dengan 36 km/jam, diperoleh tegangan dinamik rata-rata 18,957 Mpa, tegangan maksimum 34,122 MPa, regangan impak rata-rata 0,00063424 m/m, regangan maksimum 0,0011416 m/m,total deformasi rata-rata 0,0030385 m, total deformasi maksimum 0,0054693 m dan gaya impak maksimum adalah 34.820 kN. (4). Dari hasil penelitian di atas dapat disimpulkan bahwa redesain parking bumper berupa trapesium berongga yang diisi concrete dengan sisi miring radius mempunyai karakteristik yang lebih baik dibandingkan dengan hasil penelitian sebelumnya berupa parking bumper berbentuk traperium padat [5].
PEMBUATAN DAN ANALISIS GAYA BADAN PESAWAT TANPA AWAK DARI BAHAN MATERIAL KOMPOSIT YANG DIPERKUAT POLYESTER DAN SERAT ROCK WOOL DENGAN METODE HAND LAY UP Juliono S.; Ikhwansyah Isranuri; Syahrul Abda; M. Sabri; Tugiman; Mahadi
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1066.672 KB) | DOI: 10.32734/dinamis.v4i4.7120

Abstract

Badan pesawat adalah komponen utama dari sebuah pesawat terbang. Badan pesawat ini sendiri merupakan tempat melekatnya bagian-bagian pesawat seperti wing, elevator maupun roda pendaratan. Panjang badan pesawat tanpa awak ini adalah 2027 mm. Penelitian ini dilakukan untuk membuat dan menganalisis badan pesawat tanpa awak dengan menggunakan bahan komposit campuran resin polyester dengan serat rock wool. Penelitian ini bertujuan untuk mencari nilai titik berat secara teoritis pada badan pesawat tanpa awak serta mendapatkan nilai tegangan regangan yang terjadi pada badan pesawat tanpa awak melalui simulasi dengan menggunakan software Ansys 14.0. Manfaat utama dari penggunaan material komposit adalah mendapatkan kombinasi sifat kekuatan serta kekakuan tinggi dan berat jenis yang ringan. Pada proses penelitian terdapat langkah-langkah proses pembuatan badan pesawat tanpa awak. Melalui penelitian ini pada proses pembuatan badan pesawat tanpa awak dikatakan berhasil dan diperoleh letak titik berat pada badan pesawat yang dihitung secara teoritis didapat pada koordinat x= 897,37, y= 77,77. Regangan maksimum yang terjadi sebesar 0.00014584 mm/mm dan regangan minimum yang terjadi sebesar 3.2414 x 10-8 mm/mm. Tegangan maksimum sebesar 4.5635 MPa dan tegangan minimum yang terjadi sebesar 0.00045862 Mpa melalui hasil simulasi dengan software Ansys 14.0 Workbench.
DESAIN DAN ANALISIS PERHITUNGAN RODA PENDARATAN PESAWAT TANPA AWAK
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1101.093 KB) | DOI: 10.32734/dinamis.v4i4.7121

Abstract

Landing gear merupakan struktur pesawat yang berfungsi menahan beban statis pesawat dan juga beban dinamis ketika pesawat melakukan pendaratan. Dalam mendesain landing gear dilakukan pemilihan jenis landing gear dan dilakukan analisis perhitungan pada tiap komponen landing gear yang meliputi pusat gravitasi, tinggi pesawat, wheel base, wheel track, dan roda. Desain dan analisis perhitungan dilakukan dengan metode studi pustaka dimana setiap desain dan perhitungan didasarkan pada literatur pustaka. Jenis landing gear yang digunakan adalah Tail-gear landing gear dengan tinggi badan pesawat dari tanah adalah sebesar 40 cm, pusat gravitasi pesawat berada pada titik X = 94,6 mm, Y = 11,3 mm dari titik paling depan pesawat, jarak wheel base adalah sebesar 128.934 cm, jarak wheel track adalah sebesar 72 cm dengan sudut overturn sebesar 35o, dan ukuran roda depan 10 cm dan belakang 8 cm.
ANALISA RUMAH VORTEX BERBENTUK LINGKARAN DENGAN VARIASI DIAMETER LUBANG BUANG MENGGUNAKAN PERANGKAT LUNAK CFD Stefanus Tobing; Syahril Gultom; Taufiq B. N; Terang UHS Ginting; Suprianto; A. Husein Siregar; Dian M. Nasution
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1360.545 KB) | DOI: 10.32734/dinamis.v4i4.7124

Abstract

Turbin Vortex adalah salah satu jenis turbin mikrohidro yang menggunakan pusaran air sebagai penggerak sudunya. Turbin Vortex mempunyai head yang relatif rendah 0,7m-1,4m dan debit air 0,02 m2/s yang mengalir terus menerus, turbin ini sangat cocok digunakan di aliran sungai. Untuk itu dilakukan analisa dan simulasi secara numerik Turbin Vortex dengan bantuan software Ansy 14 menggunakan CFD. CFD dapat menganalisa atau memprediksi aliran fluida yang ada pada turbin vortex. Dalam proses pembentukan meliputi Preprocessing, Solving, dan Postprocessing. Analisis dilakukan pada aliran tiga dimensi (3D), transient, turbulen dan incompresible. Variabel yang digunakan untuk dianalisa adalah diameter lubang buang air yang terdiri dari tiga ukuran 9 cm, dan 7,5 cm. Didapat kecepatan aliran yang baik pada rumah turbin dengan lubang buang 7,5cm.
ANALISA PROSES MELTING DAN SOLIDIFICATION PADA PHASE CHANGE MATERIAL PADA SOLAR WATER HEATER DENGAN MENGGUNAKAN COMPUTATIONAL FLUID DYNAMIC Tri Septian M.; Tulus B Sitorus; Terang UHS Ginting; Farel H. Napitupulu; Farida Ariani; Dian M. Nasution
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1155.537 KB) | DOI: 10.32734/dinamis.v4i4.7126

Abstract

Solar Water Heater Merupakan Pemanas Air Dengan Memanfaatkan Tenaga Surya Sebagai Sumber Energi Penghasil Panasnya. Solar Water Heater Yang Digunakan Dalam Penelitian Ini Menggunakan Sistem Penyimpan Panas Sementara Yaitu Dengan Menggunakan Phase Change Material. Hal Ini Dilakukan Supaya Pemanas Air Dapat Digunakan Hingga Malam Hari. Oleh Karena Biaya Pabrikasi Yang Mahal Maka Perlu Dilakukan Simulasi Dengan Menggunakan Komputer. Penelitian Ini Berfokus Pada Proses Pelelehan Dan Pembekuan Pada Phase Change Material Yang Disinari Matahari Mulai Dari Pagi Hingga Malam Hari Serta Membandingkan Hasil Eksperimen Dan Analisa Numerik Software Fluent Perpindahan Panas Yang Terjadi Pada Solar Water Heater. Solar Water Heater Yang Disimulasikan Dalam Bentuk Dua Dimensi Dengan Ukuran Geometri Sebesar 1025 X 160 Mm Sedangkan Data Radiasi Matahari Yang Digunakan Untuk Mensimulasikan Solar Water Heater Yaitu Pada Tanggal 28 September 2013. Saat Disimulasikan Pada Software Fluent, Kondisi Batas Radiasi Matahari Diberikan Dibagian Atas Plat Absorber Pada Geometri Solar Water Heater. Hal Ini Dikarenakan Panas Radiasi Matahari Mentranmisikan Panasnya Menembus Kaca Pertama Dan Kaca Kedua Pada Kolektor Hingga Mengenai Plat Absorber. Hasil Penelitian Memperlihatkan Bahwa Bagian Kolektor Yang Paling Tinggi Temperaturnya Adalah Pada Bagian Plat Absorber Dengan Suhu Temperatur Sebesar 95oc Sedangkan Phase Change Material Selaku Sistem Penyimpanan Panas Sementara Pada Kolektor Mulai Meleleh Sekitar Pukul 11.00 Wib Sedangkan Untuk Proses Pembekuan Mulai Terjadi Sekitar Jam 19.00 Wib. Hasil Perbandingan Nilai Eksperimen Dan Analisa Numerik Software Fluent Mengalami Persen Galat Pada Bagian Kaca Pertama, Kaca Kedua Dan Plat Absorber Berturut-Turut Adalah 2.3%, 0.87% Dan 3.59%.

Page 1 of 1 | Total Record : 8