cover
Contact Name
Aly Rasyid
Contact Email
aly.rasyid@dsn.ubharajaya.ac.id
Phone
+628111085034
Journal Mail Official
aly.rasyid@dsn.ubharajaya.ac.id
Editorial Address
Universitas Bhayangkara Jakarta Raya Kampus II: Jalan Raya Perjuangan No. 81, Bekasi Utara, Kota Bekasi 17121, Indonesia
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Bhara Petro Energi
ISSN : 28285530     EISSN : 28283457     DOI : https://doi.org/10.31599/bpe.v1i2
Journal of Bhara Petro Energi (BPE) is a scientific journal managed and published by the Department of Petroleum Engineering, Faculty of Engineering, Bhayangkara University, Greater Jakarta. The focus of this journal is all about the upstream and downstream oil and gas industry as well as the geothermal industry. This journal focuses on production technology, drilling technology, petrophysics, reservoir studies and EOR (enhanced oil recovery) studies. Downstream Technology focuses on oil processing, managing surface equipment, and economic forecasting. BPE will be issued 3 (three) times a year, in March, July and December. First published in March 2022 with ISSN 2828-3457 (Online Media), and ISSN 2828-5530 (print media).
Articles 26 Documents
Studi Pengaruh Kontaminasi Properti Rheology Water Based Mud di Lapangan Sunyu Abdullah Rizky Agusman
JURNAL BHARA PETRO ENERGI Vol 1 No 3: December 2022
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/bpe.v1i3.1743

Abstract

This project focuses on Investigation of effect of contaminants on the Rheological Properties of Water-based Drilling Mud. For any drilling operation to be termed successful, care must be taken during the selection and application of the drilling fluid which are key factors that should be considered. Any actions contrary to carefully selection and application of drilling fluids could have very dire consequences. Based on the experiment work done on water base mud system to ascertain the effect of contaminants (salt, silica sand, cement and carbonate) on the rheological properties and performance of the mud, it shows that the presence of a contaminant on the drilling mud either reduces or increases the rheological properties of the mud system and in turn affects the rate of penetration, it performance and also poses serious drilling problems. It was observed that the presence of Sodium salt in the mud system increased the fluid loss into the formation. It was further observed that while Apparent Viscosity, Gel Strength increases as the mass increase from 1g to 5g, the pH and Plastic Viscosity almost did not change. The Yield point increases little.  With Cement as contaminant, it shows all rheological properties of the mud increased markedly, as the quantity of the cement used is increased from 1g to 5g and the pH does not change. Silica contamination has not showed any marked effect on the nature of the drilling mud. In fact, the more the amount of the contaminant (Silica) is added, the closer it properties are to the blank sample that do not have contaminants. The carbonate effect is largely on the Gel strength which decreases as the amount of added carbonate increases. The pH has no charges, which also means carbonate keeps the mud in it alkaline state, as it was the case with cement. Reference: Ali K., Vipulanandan C., Richardson D. (2013): Salt (NaCl) contamination of the resistivity and plastic viscosity of bentonite drilling mud, Proceedings of the center for innovative grouting materials and technology (CIGMAT) Conference & Exhibition. Bradford, B. B.: "Setting Cement Plugs Requires Careful Planning", Oil & Gas Journal, pp. 102, 1982. Cavanagh, P.H., Johnson, C. R., LeRoy-Delage, S., DeBruijn, G. G., Cooper, I., Guillot, D. J., Bulte, H., and Dargaud, B. (2007): "Self-Healing Cement - Novel Technology to Achieve Leak-Free Wells", SPE-105781 presented at the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 20-22 February. Chaney P.E, 1942. A Review of recent advances in drilling mud control, Drilling and Production Practice, American Petroleum Institute, 31-46.  Charlez P. H and Heugas O. (1991): Evaluation of Optimal Mud Weight In Soft Shale Levels, American rock mechanics association, The 32nd U.S. Symposium on Rock Mechanics (USRMS), 10-12 July, Norman, Oklahoma Chen, C.P. Tan and C. Detournay, (2002), the impact of mud filtration on wellbore stability fracture rock masses, SPE/ISRM 78241 presented at the SPE/ISRM rock mechanics conference held in Irving, Texas Dosunmu .A. and Ogunrinde .J. (2010) “Development of Environmentally Friendly Oil Based Mud using Palm Oil and Groundnut Oil”. SPE 140720. Paper presented at the 34th Annual International Conference and Exhibition in Tinapa-Calabar, Nigeria, July 31st- August 7th, 2010. Dusseault, M.B., Gray, M.  N., and Nawrocki, P.A.:  "Why Oil wells Leak:  Cement Behavior and Long-Term Consequences", SPE  64733 presented at the SPE International Oil and Gas Conference and Exhibition, Beijing, China, 2000. El-Sayed, A. A. H.: "Effect of Drilling Muds Contamination on Cement Slurry Properties", Fourth Saudi Engineering Conference, pp. 287-295, 1995. Ezzat, A.M., Rosser, H.R. & Al-Humam, A.A., 1997. ‘Control of Microbiological Activity in Biopolymer-Based Drilling Muds’, SPE paper 39285. Fadairo Adesina, Adeyemi Abiodun, Ameloko Anthony, Falode Olugbenga, (2012) “Modelling the Effect of Temperature on Environmentally Safe Oil Based Drilling New Technologies in the Oil and Gas Industry Mud Using Artificial Neural Network Algorithm” Journal of Petroleum and Coal 2012, Volume 54, Issue 1. Fadairo Adesina, Ameloko Anthony, Adeyemi Gbadegesin, Ogidigbo Esseoghene, Airende Oyakhire (2012) “Environmental Impact Evaluation of a Safe Drilling Mud” SPE Middle East Health, Safety, Security, and Environment Conference and Exhibition held in Abu Dhabi, UAE, 2–4 April 2012, SPE-152865-PP Fosso, S.W., Tina, M., Frigaard, I. A., and Crawshaw, J.  P. (2000):  "Viscous-Pill Design Methodology Leads to Increased Cement Plug Success Rates; Application and Case Studies from Southern Algeria", SPE  62752 presented at the IADC/SPE Asia Pacific Drilling Technology, Kuala Lumpur, Malaysia. Gursat Altun and Umran Serpen (2005) “Investigating Improved Rheological and Fluid Loss Performance of Sepiolite Muds under Elevated Temperatures” Proceedings World Geothermal Congress, Antalya, Turkey, 24-29 April 2005 Hssiba, K J. and Amani, M. 2013. The Effect of Salinity on the Rheological Properties of Water Based Mud under High Pressures and High Temperatures for Drilling Offshore and Deep Wells Earth Science Research; Vol. 2, 1. Hussain H. Al-Kayiem et al. (2010): Simulation of the Cuttings Cleaning During the Drilling Operation. American Journal of Applied Science 7(6), p 800-806. Mahmood Amani and Khaled J. H (2012): Salinity Effect on the Rheological Properties of Water Based Mud under High Pressures and High Temperatures of Deep Wells, SPE-163315-MS presented at SPE Kuwait International Petroleum Conference and Exhibition, 10-12 December, Kuwait City, Kuwait Nasution, M. M., Rasyid, A., & Pahrudin, G. (2022). Desain Formulasi Lumpur Untuk Pemboran Panas Bumi Di Sumur GG-01. JURNAL BHARA PETRO ENERGI, 1(1), 11-18. Nelson, E.B. and Guillot, D. (2006): "Well Cementing" 2ndEdition, Schlumberger, Sugar Land, Texas. Remillard S. C, “Applications of Nanotechnology within the Oil and Gas Industry,” Oil and Gas Review, Vol. 8, 2010, pp. 1-108.Oilfield Glossary Sachez G; N. León, M. Esclapés; I. Galindo; A. Martínez; J. Bruzual; I. Siegert, (1999) “Environmentally Safe Oil-Based Fluids for Drilling Activities” SPE 52739, Paper presented at SPE/EPA Exploration and Production Environmental Conference held in Austin, Texas. Tellisi, M., Ravi, K., and Pattillo, P.: "Characterizing Cement Sheath Properties for Zonal Isolation", WPC-18-0865 presented at the 18th World Petroleum Congress, Johannesburg, South Africa, September 25 - 29, 2005. Xiaoqing .H. and Lihui .Z., (2009) “Research on the Application of Environment Acceptable Natural Macromolecule Based Drilling Fluids” SPE 123232, Paper presented at the SPE Asia Pacific Health, Safety, Security and Environment Conference and Exhibition held in Jarkata, Indonesia, 4-6 August 2009.  
Analisa Kelayakan Peralatan Pompa Di Permukaan Dan Dyna Cards Terhadap Penurunan Produksi Harian Di Sumur “BD” Lapangan “SEI” Aly Rasyid; Eko Prastio; Ode Rifaldi
JURNAL BHARA PETRO ENERGI Vol 2 No 1: May 2023
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/bpe.v2i1.2379

Abstract

Abstract In an effort to lift oil and gas from a subsurface reservoir, companies engaged in oil and gas must carry out production operations. The production operation itself aims to make oil and gas produced or lifted to the surface. However, the problems faced to carry out maintenance in this production operation are not small and can even be categorized as a very expensive job. In order to reduce the budget of production operations there needs to be efficien by doing good maintenance and observation. One aspect that needs to be considered in the maintenance of production operations is the appropriateness of the equipment. This determination of feasibility greatly influences the cost of production operations due to maintenance, and observation is one of the most expensive part of production operations. Therefore it is necessary to have the right assessment and observation before deciding that the pump equipment used is suitable and efficient. In this study aims to evaluate the feasibility of surface and downhole pump equipment related to lower pump efficency. It is expected to be used as suggestions and consideration to evaluate the performance and safest downhole pump equipment. Keywords: production, downhole pump, production operations, production equipment Abstrak Dalam usaha untuk mengangkat minyak dan gas bumi dari reservoir, perusahan yang bergerak di bidang minyak dan gas harus melakukan operasi produksi. Operasi produksi ini sendiri bertujuan agar minyak dan gas bumi dapat diproduksikan atau di angkat kepermukaan. Namun permasalahan yang dihadapi untuk melakukan perawatan pada operasi produksi ini tidaklah sedikit bahkan bisa di kategorikan suatu pekerjaan yang sangat mahal. Oleh karena itu untuk menekan budget dari operasi produksi perlu adanya efisiensi dengan melakukan perawatan dan pengamatan yang baik. Salah satu aspek yang perlu diperhatikan dalam perawatan dalam operasi produksi adalah kelayakan equipmentnya. penentuan kelayakan ini amatlah berpengaruh pada biaya operasi produksi karena perawatan, dan pengamatan merupakan salah satu point yang paling mahal pada operasi produksi. Oleh karena itu perlu adanya penilaian dan pengamatan yang tepat sebelum memutuskan bahwa equipment pompa yang digunakan sesuai dan efisien. Pada penelitian ini dilakukan penilaian kelayakan surface dan downhole equipment pompa dihubungkan dengan penurunan effisensi pemompaan produksi sumur. Hasil dari penelitian ini bisa digunakan sebagai saran dan bahan pertimbangan dalam mengevaluasi kinerja surface dan downhole equipment pompa yang paling baik dan aman. Kata kunci: produksi, pompa bawah permukaan, operasi produksi, peralatan produksi Reference: Guo, Boyun, PH.D. (2006). Petroleum Production Engineering. Amsterdam: Elsevier Science     & Technology Books i-Handbook Schlumberger, Schlumberger, 2000 Kementrian Energi dan Sumber Daya Mineral. (2017). Basic Production. Cepu:PPSDM MIGAS Kementrian Energi dan Sumber Daya Mineral. (2017). Production Operation. Cepu:PPSDM             MIGAS Saveth K.J & Klein S.T., “The Progressing Cavity Pump Principle and Capabilities”, SPE 1873.
Kebijakan Pemerintah Dalam Penentuan Kontrak Gross Split Sektor Minyak Dan Gas Di Indonesia Edy Soesanto; Abdullah Rizky Agusman; M. Mahlil Nasution; Siti Fadhillah
JURNAL BHARA PETRO ENERGI Vol 2 No 1: May 2023
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/bpe.v2i1.2380

Abstract

Abstract As a solution to the problem of the Cost Recovery production sharing contract system, the Government of Indonesia through the Ministry of Energy and Mineral Resources issued Regulation of the Minister of Energy and Mineral Resources of the Republic of Indonesia Number 08 of 2017 concerning Gross Split Production Sharing Contracts. This new regulation is motivated by the low number and length of time it took for oil and gas reserves to be discovered, accompanied by Non-Tax State Revenue (PNBP) for the upstream oil and gas sector which continues to decline. The Gross Split production sharing contract scheme also offers a reduction in bureaucracy in investing which is expected to attract investors to carry out exploration and exploitation in Indonesia. This study aims to analyze the legal principles related to Gross Split regulations in the aspect of improving the investment climate for upstream oil and gas and analyze the new role of the Oil and Gas Special Task Force as an institution appointed by the state to exercise control and supervision of the activities of Cooperation Contract Contractors in Sharing Contracts. Keywords: production, gross split, oil and gas sector, production sharing contract Abstrak Sebagai solusi atas permasalahan sistim kontrak bagi hasil Cost Recovery, Pemerintah Indonesia melalui Kementerian Energi dan Sumber Daya Mineral mengeluarkan Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 08 Tahun 2017 tentang Kontrak Bagi Hasil Gross Split. Peraturan baru ini dilatarbelakangi rendahnya angka dan lamanya waktu penemuan cadangan minyak dan gas bumi, disertai Penerimaan Negara Bukan Pajak (PNBP) sektor hulu minyak dan gas bumi yang terus menurun. Skema kontrak bagi hasil Gross Split juga menawarkan pemangkasan birokrasi dalam berinvestasi yang diharapkan mampu menarik minat para investor guna melaksanakan eksplorasi dan eksploitasi di Indonesia. Penelitian ini bertujuan menganalisa kaidah hukum terkait regulasi Gross Split dalam aspek peningkatan iklim investasi hulu minyak dan gas bumi dan menganalisa peran baru Satuan Kerja Khusus Minyak dan Gas Bumi sebagai lembaga yang ditunjuk negara untuk melakukan pengendalian dan pengawasan terhadap aktifitas Kontraktor Kontrak Kerja Sama dalam Kontrak Bagi Hasil. Kata kunci: produksi, gross split, sektor minyak dan gas, kontrak bagi hasil Reference: Dr, R. C. (2021, january 2). Memahami Cost Recovery dan Gross Split dalam Kontrak Migas. Diambil kembali dari Hukum Online.com: https://www.hukumonline.com/klinik/a/memahami-i-cost-recovery-i-dan-i-gross-split-i-dalam-kontrak-migas-lt602a649c213ed Dwi Qurbani, I. (2012). Politik Hukum Pengelolaan Minyak dan Gas Bumi di Indonesia. Politik Hukum Pengelolaan Minyak dan Gas Bumi di Indonesia, 2-6. Hernandoko, A. M. (2018). Implikasi Berubahnya Kontrak Bagi Hasil (Product Sharing Contract) ke Kontrak Bagi Hasil Gross Split. Jurnal Privat Law, vol 2. Migas, D. (2017, februari 1). Kementrian ESDM. Diambil kembali dari Kementrian Energi dan Sumber daya Mineral: https://migas.esdm.go.id/post/read/permen-esdm-nomor-08-tahun-2017-tentang-kontrak-bagi-hasil-gross-split Peraturan dan Kebijakan Perundangan di Sektor Migas. (2020, januari 1). Diambil kembali dari EITI Indonesia: https://eiti.esdm.go.id/peraturan-kebijakan-perundangan-sektor-migas/ Potensi Minyak Dan Gas Di Indonesia Dan Kontribusinya Untuk Perekonomian. (2020, september 5). Diambil kembali dari Transcone Indonesia: https://transcon-indonesia.com/id/blog/potensi-minyak-dan-gas-di-indonesia-dan-kontribusinya-untuk-perekonomian Prinsip Utama Kebijakan Cost Recovery. (2010, februari 18). Diambil kembali dari ESDM.com: https://migas.esdm.go.id/post/read/Prinsip-Utama-Kebijakan-Cost-Recovery Putrohari, R. D. (2013, oktober 21). Peran Industri Migas di Indonesia. Diambil kembali dari Academia.edu: https://www.academia.edu/5513819/Peran_Industri_Migas_di_Indonesia Ramli nonci, A. F. (2020). Analisa deskripsi Minyak Bumi. jurnal penelitian dan perekonomian, 1-19. Romadhon, T. M. (2004). Peluang Bagi Penyelesaian Konflik Agraria Di Sub Sektor 1 Pertambangan Umum. Jurnal Analisis Sosial Vol. 9, 4-8. Utomo, L. T. (2016). Aspek Hukum Penerapan AsasKekuatan Mengikat dalam Kontrak Bagi Hasil Minyak dan Gas Bumi di Indonesia. ,Diponegoro Law Jurnal , 5, 4-10.
Upaya Penurunan Produk Cacat Pada Proses Painting Unit CN113R Dengan Metode Failure Mode Effect Analysis (FMEA) Tubagus Hedi Saepudin; Revi Fajar Laksono
JURNAL BHARA PETRO ENERGI Vol 2 No 1: May 2023
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/bpe.v2i1.2381

Abstract

Abstract PT.SGMW Motor Indonesia is a company which is engaged in the automotive field, especially in cars assembly with Wuling as its brand in Indonesia and the product called CN113R. In an effort to maintain product quality, PT.SGMW seeks to minimize the number of defects in each inspection unit. In order to attract large Indonesian market, the company needs to improve the quality of the product which are produced. From data collection conducted at PT. SGMW at Type Approval phase (TA) from February to March 2017, it was found that Sanding Mark defect is the biggest defect type that happened in PT.SGMW that is equal to 24% and this happened at painting process. Then in the next stage, after brainstorming process with related parties in the Paintshop Department to find out the main cause of Sanding Mark defect which is then shown through a fishbone diagram. To find out the improvement priority or follow-up to the causes described in fishbone diagram, I use 5W + 2 H method. In the next step, an improvement analysis is done using Failure Mode Effect Analysis (FMEA) method. after that, by the RPN result which is obtained, the most potential failure mode as the cause of the defect that must be handled immediately. From the observation results obtained the highest defect value is sanding mark. One of the causes of the highest Risk Priority Number (RPN) value in the Elpo sand section is because of the used of the orbital sender is tilted and angled. After the improvement, it can decrease the defect from 449 findings down to 297 findings, and lower repair cost from Rp. 142,863,718 to Rp 94,500,054. Keywords: Failure Mode Effect Analysis, Defect, Cost Of Poor Quality Abstrak PT.SGMW Motor Indonesia merupakan perusahaan yang bergerak pada bidang otomotif, khususnya dalam perakitan mobil dengan merk Wuling di Indonesia dengan produk yang diberi nama CN113R. Dalam upaya mempertahankan kualitas produk. PT.SGMW berusaha untuk meminimasi jumlah kecacatan dalam setiap unit inspeksinya, agar dapat menarik pasar bangsa Indonesia yang besar perusahaan tersebut perlu meningkatkan kemampuan dari segi kualitas produk yang dihasilkan. Dari pengumpulan data yang dilakukan di PT. SGMW pada fase Type Approval (TA) dari bulan Februari sampai dengan Maret 2017, didapatkan bahwa cacat Sanding Mark merupakan jenis cacat terbesar yang terjadi di PT.SGMW yaitu sebesar 24% dan hal ini terjadi pada proses pengecatan Lalu pada tahap berikutnya setelah dilakukan proses brainstorming dengan pihak terkait di dalam Department Paintshop untuk mencari penyebab utama cacat Sanding Mark yang kemudian hasilnya ditampilkan melalui diagram fishbone. Untuk mengetahui prioritas perbaikan atau tindak lanjut terhadap penyebab ~penyebab yang dipaparkan dalam diagram fishbone maka digunakanlah metode 5W + 2 H. Pada tahap selanjutnya, dilakukan analisis perbaikan dengan menggunakan metode Failure Mode Effect Analysis (FMEA), setelah itu melalui hasil RPN yang didapatkan, modus kegagalan potensial yang paling utama sebagai penyebab terjadinya kecacatan yang harus segera ditangani. Dari hasil pengamatan tersebut di peroleh nilai defect tertinggi adalah sanding mark. Salah satu penyebab nilai Risk Priority Number (RPN) tertinggi di bagian Elpo sand adalah karena metode penggunaan orbital sender miring dan menyudut. Setelah dilakukan perbaikan sehingga dapat menurunkan defect dari 449 temuan turun menjadi 297 temuan, dan menurunkan biaya repair dari Rp. 142.863.718 menjadi Rp 94.500.054. Kata kunci: Failure Mode Effect Analysis, Defect, Cost Of Poor Quality Reference: Ansori, N., & Mustajib, M. I. (2013). Sistem Perawatan Terpadu (IMS). Yogyakarta: Graha Ilmu. Abdul Aziz, Uzer (2017). Analisis Defect Burry Pada Produk Part Holder Wire Dengan Metode Failure Mode Effect Analisys (FMEA) Di PT.PSC .Universitas Bhasysangkara Jakarta, Jakarta. Fahmi, I. (2014). MAnajemen Produksi dan Operasi. Bandung: Alfabeta. Gasperz, V. (2012). All-In-One Management Tool Book. PT Gramedia Pustaka Utama. Gasperz, V (2014). Pedoman Implementasi Program SIX SIGMA Terintegrasi Dengan ISO 9001:2000, MBNQA, dan HACCP. Jakarta. PT. Gramedia Pustaka Utama. Ginting,Rosnani (2007). Sistem Produksi, Edisi Pertama, Graha ilmu Yogyakarta Indri Parwati, Cyrilla (2016). Analisis Pengendalian Kualitas produk STeel Pipes Dan Tubulars dengan Menggunakan Metode Failure Mode Effect Analisys (FMEA) Di PT.Dwi Sumber Arca Waja Batam.. Jurusan Tehnik Industri Institut Sains & Teknologi AKPRIND Yogyakarta. Jaifandra Maradika, Yogi (2016). Analisis KegagalanProses produksi Pipe Collar dengan Menggunakan Metode Failure Mode Effect Analisys (FMEA) Di PT.Bannex Indonesia. Universitas Bhasysangkara Jakarta, Jakarta. Kurniawan, F. (2013). Teknik dan Aplikasi Manajemen Perawatan Industri. Yogyakarta. PT. Graha Ilmu. Yamit, Z. (2013). Manajemen Kualitas Produk dan Jasa. Yogyakarta. Ekonisia
Respon Tekanan Transient Pada Reservoir Gas Multilayer Dengan Hydraulic Fracturing M. Mahlil Nasution; Nugroho Marsiyanto; Citra Wahyuningrum
JURNAL BHARA PETRO ENERGI Vol 2 No 1: May 2023
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/bpe.v2i1.2382

Abstract

Abstract Transient pressure analysis is designed to provide a quantitative analysis of reservoir properties. The data from the test results are collected to support information on a reservoir which is then used to become a predictive model and update the geological model. Based on the type, Pressure Transient is divided into pressure Build up and Pressure Drawdown. In testing, Pressure Transient analysis can describe the characteristics of the reservoir properties or the formation's ability to produce fluid. This test has advantages compared to other techniques in determining reservoir characteristics, because the transient pressure test covers a larger area so that it allows estimation of porosity, reservoir permeability, average pressure, skin, fracture length, reservoir heterogeneity, drainage area, shape, and even distance. can reach up to the boundary or flow discontinuities. Keywords: Reservoir, Pressure Build Up, Pressure DrawDown, Hydraulic Fracturing, Transient Pressure Abstrak Analisa tekanan transien dirancang untuk memberikan analisis kuantitatif dari sifat- sifat reservoir. Data-data hasil pengujian tersebut dikumpulkan Untuk dapat digunakan menjadi data penunjang informasi suatu reservoir yang kemudian akan digunakan sebagai model prediktif serta memperbarui model geologi. Jika di Klasifikan menurut jenisnya maka Pressure Transient dapat dibagi menjadi dua yaitu  pressure Build up dan Pressure Drawdown. Dalam suatu pengujian analisa dari  Pressure Trasient akan dapat menggambarkan karakter atau sifat dari suatu reservoir atau kemampuan dari  formasi untuk bisa menghasilkan suatu fluida. Pengujian ini memiliki kelebihan apabila dibandingkan dengan teknik atau metode lain dalam menentukan karakteristik atau sifat dari reservoir, hal ini  dikarenakan pengujian tekanan transient dapat mencakup daerah yang jauh lebih besar sehingga jal ini memungkinkan estimasi atau perkiraan dari harga  porositas, tekanan rata-rata, permeabilitas reservoir, panjang fraktur, skin, heterogenitas reservoir, jarak, bentuk, bahkan luas drainase nya dapat di perkirakan  hingga mencapai  bidang batasnya (boundary) atau yang lebih dikenal dengan istilah flow discontinuities. Kata kunci: Reservoir, Pressure Build Up, Pressure Drawdown, Hydraulic Fracturing, Tekanan Transient. Reference: Yew, C. H. (1978). Mechanics of Hydraulic Fracturing. Texas : Gulf Publishing Company. Williams, B. B., Gidley, J. L., Schechter, R. S. (1979). Acidizing Fundamentals. New York : AIME. Anonim. (2003). Perencanaan Hydraulic Fracturing. Jakarta : Pertamina Handbook Perencanaan Stimulasi (Pdf). Schechter, R. S. (1992). Oil Well Stimulation. Englewood Cliffs New Jersey : Prentice Hall. Petroleum Engineer Field Pendopo. (2012). Data Produksi, Data Reservoir, Data Komplesi Sumur MHL-11. Laporan Kerja Fungsi Petroleum Engineer. Prabumulih: PT Pertamina Hulu Rokan. Economides, M. J., Martin, T. (2007). Modern Fracturing, Enhancing Natural Gas Production. Houston : ET Publishing. James, S. S. (2012). Post Job Report SPA -028 Spectra Frac 4000 with 20/40 carbolite. Pendopo : BJ Service. Economides, M. J., Hill, A. D., Ehlig, C. (1994). Petroleum Production System. New Jersey : Prentice Hall. Economides, M. J., Nolte, K. G. (1989). Reservoir Stimulation. New Jersey : Prentice Hall. 10. Golan, M., Whitson, C. H. (1991). Well Performance. Norway : Prentice Hall Rasyid, A., & Lestari, T. S. (2018). Penentuan Produktivitas Zona Minyak Dengan Menggunakan Modular Formation Dynamic Technology. Jurnal Kajian Ilmiah, 18(1).
Analysis Glycol Losses On Gas Dehydration Unit PT X Field Z Desi Kusrini, M.T.
JURNAL BHARA PETRO ENERGI Vol 2 No 1: May 2023
Publisher : Department of Petroleum Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/bpe.v2i1.2388

Abstract

Abstract The dehydration process gas is a process of separation of gas from the water content by mixing an absorbent for example glycol, in PT X field Z process of dehydration of gas using triethylene glycol to decrease Water content Minimum below 7 lb / mmscfd to be sold to consumers. The goal of the research is to determine the water content that is absorbed in the contactor, knowing the number of glycol loss and knowing the cause of glycol loss after experiencing the process of dehydration. Every dehydrated process using glycol is always there whose name is glycol losses either in reboiler or contactor, but the losses are classified normal or abnormal loss, losses can be either liters or percentage loss glycol lost. To determine how much glycol is missing during the dehydration process then we have to look for production data such as gas flow rate data, inlet water content and outlet water content contactor then moisture content data, and the last data from glycol like SG Glycol and purity glycol, later from the data is known calculation of circulation glycol and know the amount of glycol loss whether the normal loss or abnormal loss. The water content omitted is 32.49 lbs / h while the Glycol losses found in the above-normal state are 0.35% with the lowest amount of Glycol losses of 0.02 gal / MMSCF and the largest 0.091 gal / MMSCF and the cause of Glycol loss Include the number of the tray, time, surface area of absorption, flow speed, and the temperature that is in the reboiler or the regeneration of glycol. Keywords: Glycol losses, dehydration, Glycol, triethylene glycol, tray. Abstrak Proses Dehidrasi gas adalah suatu proses pemisahan gas dari kandungan air dengan cara mencampurkan suatu absorbent misalnya saja glycol, di PT X Lapangan Z proses dehidrasi gas menggunakan trietylene glycol untuk menurunkan kandungan air minimal di bawah 7 lb/mmscfd agar bisa dijual ke konsumen. Tujuan Penelitian ini adalah untuk menentukan kandungan air yang terserap di contactor, mengetahui jumlah glycol loss dan mengetahui penyebab glycol loss setelah mengalami proses dehidrasi. Setiap proses dehidrasi menggunkan glycol selalu ada yang namanya glycol losses baik itu di reboiler ataupun contactor, namun losses tersebut digolongkan loss normal atau upnormal, losses bisa berupa liter ataupun presentase loss glycol yang hilang. Untuk menentukan berapa banyak glycol yang hilang pada proses dehidrasi maka kita harus mencari data produksi seperti data flow rate gas, kadar air inlet dan kadar air outlet contaktor kemudian data kandungan uap air dan yang terakhir data dari glycol seperti SG glycol dan kemurnian glycol, nantinya dari data tersebut diketahui perhitungan sirkulasi glycol dan mengetahui jumlah glycol loss apakah normal loss atau upnormal loss.Kandungan air yang dihilangkan ialah 32,49 lbs/jam sedangkan Glycol losses yang ditemukan pada keadaan diatas normal ialah 0,35% dengan jumlah Glycol losses yang terendah sebesar 0,020 gal/MMSCF dan yang terbesar 0,091 gal/MMSCF dan penyebab Glycol loss meliputi jumlah tray, waktu, luas permukaan penyerapan, kecepatan alir dan suhu yang berada di reboiler atau saat regenerasi glycol. Kata kunci: Glycol losses, dehydration, Glycol, triethylene glycol, tray. Reference Arnold, Ken. 1999. “Surface Production Operations Design of Gas Handling Systems and  Facilities Volume 2.” .Gulf Publishing Company. GPSA. 2004. “Engineering Data Book” Oklahoma: Gas  Processors Suppliers Association. Stewart, Maurice. 2011. ”Gas Dehydration Field Manual”.  Amsterdam: Gulf Professional Publishing.

Page 3 of 3 | Total Record : 26