cover
Contact Name
Muhammad Taufiq Fathaddin
Contact Email
muh.taufiq@trisakti.ac.id
Phone
+6285770946165
Journal Mail Official
jeeset_mtp@trisakti.ac.id
Editorial Address
Program Studi Magister Teknik Perminyakan (Master of Petroleum Engineering) Fakultas Teknologi Kebumian dan Energi Universitas Trisakti Gedung D Lantai 5 Universitas Trisakti, Jalan Kyai Tapa No.1 Grogol, Jakarta Barat, 11440, Indonesia.
Location
Kota adm. jakarta barat,
Dki jakarta
INDONESIA
Journal of Earth Energy Science, Engineering, and Technology
Published by Universitas Trisakti
ISSN : 26153653     EISSN : 26140268     DOI : https://doi.org/10.25105/jeeset.v1i1
Core Subject : Science,
This journal intends to be of interest and utility to researchers and practitioners in the academic, industrial, and governmental institutions.
Articles 5 Documents
Search results for , issue "Vol. 3 No. 2 (2020): JEESET VOL. 3 NO. 2 2020" : 5 Documents clear
Simulation Study of Hot Waterflood and WASP Injection Post Mature Steamflood Ludovika Jannoke; Iwan Setya Budi; Astra Agus Pramana
Journal of Earth Energy Science, Engineering, and Technology Vol. 3 No. 2 (2020): JEESET VOL. 3 NO. 2 2020
Publisher : Penerbitan Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (308 KB) | DOI: 10.25105/jeeset.v3i2.7600

Abstract

Steamflood is the most successful thermal EOR applied throughout the world and have produced the biggest portion of oil from EOR methods. As high intensity energy and associated cost are put to produce oil, optimization in any level can have tremendous impacts. Optimization in steamflood operation can be achieved by optimizing steam injection (rate, time), especially in mature pattern/ field or nearing the end of field life/ abandonment. This objective can be done thru utilization of retained heat in the reservoir and overburden/ underburden as they are not instantaneously produced with fluids. By using reservoir simulation, it can be shown that injection is not necessary to be continue until abandonment but can be stopped at a much earlier time hence a much profitable steamflood operation can be achieved.
Pipe Network Evaluation for "X" Field Production Optimization Slamet Widodo Kurniansyah; Esaim Mustafa Abrahim Omar; Dwi Atty Mardiana
Journal of Earth Energy Science, Engineering, and Technology Vol. 3 No. 2 (2020): JEESET VOL. 3 NO. 2 2020
Publisher : Penerbitan Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (713.737 KB) | DOI: 10.25105/jeeset.v3i2.7601

Abstract

Fields "X" is an old field in the South East Sumatra Block. The area was developed using ten platforms. One main problems on this field is the disruption of some wells productivity due to flow constraints in the piping network. The objective of this paper is to evaluate the pipeline network for area "X1" using simulation model. The simulation results show that there are bottlenecking and backpressure problems in the network. By fixing the problems, total oil production in this area can be increased up to 19 percent or 1,006.2 BOPD higer than initial condition.
Laboratory Study of the Effect of Salinity on the Demulsification Process in High Temperature Crude Oil Denny Aditya Rachman; Havidh Pramadika; Samsol Samsol
Journal of Earth Energy Science, Engineering, and Technology Vol. 3 No. 2 (2020): JEESET VOL. 3 NO. 2 2020
Publisher : Penerbitan Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (208.957 KB) | DOI: 10.25105/jeeset.v3i2.7602

Abstract

In the process of drilling and servicing oil wells, KCl and NaCl used to provide hydrostatic pressure into the bowels of the earth. The brine solution was produced accidentally to the surface facility when the oil lifting process was carried out and induces the thickness of the oil-water emulsion in the separation tank. Emulsions must be broken down into oil and water phases so that they do not interact with the oil treatment process in the refinery unit. Emulsion stability was influenced by pH, salinity, temperature and concentration of asphaltene, resin and wax. The purpose of this study was to determine the effect of salinity on the oil-water demulsification process. This research was conducted by varying the salinity of 5%, 15%, 25%, and 35% in a 100 ml oil-water emulsion sample with a ratio of 1: 1 oil and water. Demulsification of the emulsion sample using the precipitation method for 120 minutes by recording the% of oil volume separate every 20 minutes, at temperatures of 30 ° C and 110 ° C. The higher the temperature given, the more stable the emulsion in crude oil. From the final result after 120 minutes of pricipitation shows that the emulsion separation process which influenced by NaCl salinity is more difficult than the effect of KCl salinity.
The Analysis of Pressure Drop on RL 014 for Condensate Disposal on Geothermal Pipe Line Rial Dwi Martasari; Trias Puji Lestari
Journal of Earth Energy Science, Engineering, and Technology Vol. 3 No. 2 (2020): JEESET VOL. 3 NO. 2 2020
Publisher : Penerbitan Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (384.358 KB) | DOI: 10.25105/jeeset.v3i2.7604

Abstract

Geothermal energy from the Earth's magma is manufactured in the form of hot steam. On the process of transmission of steam in the Pipe Line, there are various problems such as condensation in the steam. Condensation can cause problems such as pressure drop. The formation of condensate gives a negative impact on production activities both in the pipeline or power plant, thus condensate formed in pipelines should be disposed of via the blow down or steam trap. Due to a large number of steam pipelines in the DW area then to do an analysis of pipelines in order to prioritize the disposal of condensate in the pipe more prone formed condensate. DW Area special analysis was not done against condensation and the number of condensates that are formed so as to indicate the occurrence of condensation done with regular analysis pressure drop in the pipeline. The results of the analysis of the pipeline must first and more frequently carried out disposal of condensate on the RL 014 based on pressure drop highest is line DW 14 a and DW 67, next line DW 18 and 17, and the last is the line 11 and 14 b DW. The condition of the steam trap is also noteworthy if the steam trap leak then it can lower the temperature in the pipe. The drop in temperature in the pipeline will accelerate the condensation, the results of the analysis there is a steam trap leaked is 401.00.17.ST19 and 401.00.05.ST14 . Steam trap leaked that needs to be done to combat the most. The production of steam RL 014 per day was able to donate a 52.52% or about 73.5 MW of the total needs of PLTP (geothermal power plant) 140 MW per day.
The Effect of Thixotropic Additive on the Properties of the G Class Cement Mustamina Maulani
Journal of Earth Energy Science, Engineering, and Technology Vol. 3 No. 2 (2020): JEESET VOL. 3 NO. 2 2020
Publisher : Penerbitan Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (191.487 KB) | DOI: 10.25105/jeeset.v3i2.7613

Abstract

In oil, gas, and geothermal drilling activities, the casing cementing process is always carried out in order to fulfill its function properly and safely. Therefore, everything that supports these activities must be carefully thought out. Before the actual cementing process is applied in the oil, gas, and geothermal field, laboratory-scale simulation must first be carried out by conducting experiments and testing several formulations of cement, water mixture, and additives to be used. The author chooses thixotropic additives, besides functioning as an accelerator, thixotropic can also strengthen the cement itself. With a number of experiments, an optimal cement slurry composition formulation will be obtained, in the sense that by using as few additives as possible, the requirements of the physical characteristics will meet the required standards for conditions (temperature and pressure) of the formation in the well to be cemented. All cementing activities are expected to run well, smoothly, and on time.

Page 1 of 1 | Total Record : 5