cover
Contact Name
Eko Fajar Cahyadi
Contact Email
ekofajarcahyadi@ittelkom-pwt.ac.id
Phone
+6285384848666
Journal Mail Official
infotel@ittelkom-pwt.ac.id
Editorial Address
Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) Institut Teknologi Telkom Purwokerto Jl. D. I. Panjaitan, No. 128, Purwokerto 53147, Indonesia
Location
Kab. banyumas,
Jawa tengah
INDONESIA
Jurnal INFOTEL
ISSN : 20853688     EISSN : 24600997     DOI : https://doi.org/10.20895/infotel.v15i2
Jurnal INFOTEL is a scientific journal published by Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) of Institut Teknologi Telkom Purwokerto, Indonesia. Jurnal INFOTEL covers the field of informatics, telecommunication, and electronics. First published in 2009 for a printed version and published online in 2012. The aims of Jurnal INFOTEL are to disseminate research results and to improve the productivity of scientific publications. Jurnal INFOTEL is published quarterly in February, May, August, and November. Starting in 2018, Jurnal INFOTEL uses English as the primary language.
Articles 5 Documents
Search results for , issue "Vol 12 No 1 (2020): February 2020" : 5 Documents clear
Trilateration Method for Estimating Location in RSSI-Based Indoor Positioning System Using Zigbee Protocol Herryawan Pujiharsono; Duwi Utami; Rafina Destiarti Ainul
JURNAL INFOTEL Vol 12 No 1 (2020): February 2020
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v12i1.380

Abstract

Wireless network technology that is used today is developing rapidly because of the increase needed for location information of an object with high accuracy. Global Positioning System (GPS) is a technology to estimate the current location. Unfortunately, GPS has a lack of accuracy around 10 meters when used indoors. Therefore, it began to be developed with the concept of an indoor positioning system. This is a technology used to estimate the location of objects in a building by utilizing WSN (Wireless Sensor Network). The purpose of this study is to estimate the location of the unknown nodes in the lecturer room as objects and obtain the accuracy of the system being tested. The positioning process is based on the received signal strength (RSSI) on the unknown node using the ZigBee module. The trilateration method is used to estimate the unknown nodes located at the observation area based on the signal strength received at the time of testing. The result shows that the path loss coefficient value at the observation area was 0.9836 and the Mean Square Error of the test was 1.54 meters, which implies that the system can be a solution to the indoor GPS problem.
Analysis And Performance Comparison of Microwave And WiFi 802.11ac Based Backhaul For Long Term Evolution Network In Urban Area Nida Nurvira; Anggun Fitrian Isnawati; Achmad Rizal Danisya
JURNAL INFOTEL Vol 12 No 1 (2020): February 2020
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v12i1.454

Abstract

Increasing user requirements for LTE networks, data traffic from eNodeB to core network is also increases, therefore, the recommended solution for meeting this high data traffic is to use a backhaul network design. Backhaul is the path or network used to connect eNodeB with the core network. In this research, backhaul technology used is wi-fi 802.11ac backhaul and microwave backhaul. In this study begins by collecting existing data, then perform capacity calculations to find out the number of eNodeB needed and to find out the capacity of the backhaul links to be designed, then determine the antenna height to achieve LOS conditions, then calculate the desired performance standards and calculate the backhaul network link budget on microwave and wi-fi technologies. Based on the calculation results in terms of capacity, the total user target is 90,167 users and has a throughput capacity per eNodeB of 61 Mbps. In the link-capacity calculation, the total link capacity is 427 Mbps. From the simulation results that using microwave technology, the average RSL value is -30.90 dBm, the value meets the -57 dBm threshold standard and the value of availability does not meet the standard of 99.999% because the average value obtained is 99.998095%. Whereas for wi-fi technology, the average RSL value is -39.24 dBm and meet the -72 dBm threshold standard, for the average availability value meets 99.999% standard, with a value of 100%. From the results of the two technologies, can be conclude that the wi-fi technology is more suitable for the use of backhaul network design in Ciputat Sub-district.
Analysis of Utilization Bandwidth and Power Transponder Extended C-Band On The Satellite Telkom 3S VSAT SCPC Shinta Romadhona; Intan Rizqiyani Nur Faizah; Imam MP Budi
JURNAL INFOTEL Vol 12 No 1 (2020): February 2020
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v12i1.461

Abstract

On satellite communication systems, bandwidth and power are limited and expensive resources. Optimization of bandwidth and power utilization in Telkom 3S Satellite could be achieved if the ratio value of the percentage of bandwidth and power is 1: 1. The optimization conditions are influenced by the calculation of the link budget, the use of appropriate modulation and FEC settings. QPSK and 8-PSK modulation techniques with FEC used are ¾, 7/8, and 0.9 with a 9 m Hub antenna and VSAT SCPC with a diameter of 2.4 m and the same data rate of 1024 kbps. Based on the results of this research, the lower the modulation technique used, the lower the ratio of bandwidth and power. The most optimal FEC value to be used is 8-PSK modulation at FEC 0.93 with the resulting percentage is 97.25%, where the total carrier bandwidth generated is 93.415, and the amount of carrier power is 96.05, while the worst is modulation QPSK is at the FEC of 3/4 by producing a percentage of 35% which falls into the limited power category. Thus, the most appropriate modulation used on the Telkom 3S Satellite is the 8-PSK modulation with an FEC of 0.93.
Outage Performances of 5G Channel Model Influenced by Barometric Pressure Effects in Yogyakarta Solichah Larasati; Serli Ridho Yuliani; Achmad Rizal Danisya
JURNAL INFOTEL Vol 12 No 1 (2020): February 2020
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v12i1.463

Abstract

Abstract — The fifth-generation cellular technology (5G) is predicted to adopt a high-frequency channel, which could lead to a new challenge, namely, wave propagation attenuation. This attenuation is affected by natural conditions, such as barometric pressure, rain rate, humidity, and vegetation density. This paper proposes a 5G channel model under the barometric pressure effect to address the issue. The channel model is obtained from series computer simulations by operating frequency of 28 GHz and real-field parameters of Yogyakarta environments. The 5G channel model frameworks consist of two steps. First, generate the instantaneous Power Delay Profile (PDP) using NYU Wireless Simulator with real-field parameters of the environment. Second, the instantaneous PDP is then used to calculate the representative PDP. PDP differs from one country to another, especially on 5G technology, because of the high-frequency band, which is sensitive to nature. To observe the barometric pressure effect, we need to generate the instantaneous PDP with minimum and maximum barometric effects. PDP value used to calculate the outage probability of channel capacity (C) is smaller than the coding rate (R), indicating a failure of detection at the receiver based on the Shannon theory. Outage probability is obtained by the cumulative distribution function of the capacity evaluated against the coding rate. Outage probability results in both scenarios can reach a point of 10-4, for coding rate ½ needs 17.649883 dB, coding rate ¾ needs 20.020953 dB, and coding rate 1 needs 22 dB. This shows that barometric does not significantly influence the performance of the 5G communication system.
The Communication System of Building from Outdoor to Indoor with AMC at 10 GHz Andrita Ceriana Eska
JURNAL INFOTEL Vol 12 No 1 (2020): February 2020
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v12i1.465

Abstract

The propagation model of communication systems was used propagation from outdoor to indoor of building. In the inside that building used partition with brick. That propagation condition used downlink condition from mobile station side. The communication frequency used 10 GHz. Some parameter variation was used in this research such as radio base station coverage, mobile station location of building, and code rate communication. The coverage variation of radio base station used femtocell and picocell. As the result described signal to noise ratio (SNR)at every node communication, adaptive modulation and coding (AMC) variation, and coverage area percentage in the building. The modulation and coding scheme (MCS) was used consist of QPSK, 16 QAM, and 64 QAM

Page 1 of 1 | Total Record : 5


Filter by Year

2020 2020