cover
Contact Name
Istadi
Contact Email
istadi@che.undip.ac.id
Phone
+6281316426342
Journal Mail Official
bcrec@live.undip.ac.id
Editorial Address
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
ISSN : -     EISSN : 19782993     DOI : https://doi.org/10.9767/bcrec
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science, and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on the general chemical engineering process are not covered and out of the scope of this journal. This journal encompasses Original Research Articles, Review Articles (only selected/invited authors), and Short Communications, including: fundamentals of catalyst and catalysis; materials and nano-materials for catalyst; chemistry of catalyst and catalysis; surface chemistry of catalyst; applied catalysis; applied bio-catalysis; applied chemical reaction engineering; catalyst regeneration; catalyst deactivation; photocatalyst and photocatalysis; electrocatalysis for fuel cell application; applied bio-reactor; membrane bioreactor; fundamentals of chemical reaction engineering; kinetics studies of chemical reaction engineering; chemical reactor design (not process parameter optimization); enzymatic catalytic reaction (not process parameter optimization); kinetic studies of enzymatic reaction (not process parameter optimization); the industrial practice of catalyst; the industrial practice of chemical reactor engineering; application of plasma technology in catalysis and chemical reactor; and advanced technology for chemical reactors design. However, articles concerned about the "General Chemical Engineering Process" are not covered and out of the scope of this journal.
Articles 16 Documents
Search results for , issue "2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022)" : 16 Documents clear
Photocatalytic Degradation of Malachite Green by NiAl-LDH Intercalated Polyoxometalate Compound Yulizah Hanifah; Risfidian Mohadi; Mardiyanto Mardiyanto; Aldes Lesbani
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.3.15418.627-637

Abstract

Composites based on layered double hydroxide with polyoxometalate K3[-PW12O40] and K4[-SiW12O40] were synthesized to form NiAl-[SiW12O40] and NiAl-[PW12O40]. The materials were characterized by XRD, FTIR, SEM, and UV-DRS and were then applied as a photocatalyst to degrade MG. The effects of catalyst loading, pH value, and contact times on photodegradation performance were carried out in this study. The results indicated that        NiAl-LDH was successfully synthesized by showing the peak diffractions at angles 11.63°, 23.13°, and 35.16°. Both kinds of attained NiAl-[SiW12O40] and NiAl-[PW12O40] had typical structures of LDH that were proved by appearing diffraction at 2θ angles 10.76°, 26.59°, 30.8°, and 63.11° for NiAl-[PW12O40] and at 2θ angles 8.26°, 11.34°, 29°, and 35.1° for NiAl-[SiW12O40]. The materials used for the fifth regeneration were characterized by FTIR, which still presents characteristics of LDH structure. The photocatalyst was applied for the first time to degrade MG. The decrease of band gap on NiAl pristine than LDH composite from 4.76 eV to 3.22 eV for NiAl-[SiW12O40] and 3.78 eV for NiAl-[PW12O40] respectively, was presented by DR-UV analysis. LDH composite shows improved degradation photocatalytic performance in comparison with LDH pristine. It was present by the %degradation MG performances were 68.94% for NiAl LDH, 84.51% for NiAl-[PW12O40]), and 88.91% for NiAl-[SiW12O40]. The degradation percentage indicates that the LDH-polyoxometalate composite has succeeded in increasing the ability of photodegradation catalytic and the regeneration ability of LDH pristine. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
High Selectivity and Stability Structure of Layered Double Hydroxide-Biochar for Removal Cd(II) Neza Rahayu Palapa; Patimah Mega Syah Bahar Nur Siregar; Alfan Wijaya; Tarmizi Taher; Aldes Lesbani
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.3.14288.520-532

Abstract

Composite M2+/Al-BC (Ca/Al-BC, Cu/Al-BC, and Ni/Al-BC) have been successfully synthesized. Composite and pristine materials were used as adsorbents of cadmium(II) [Cd(II)] in an aqueous solution. Firstly the performance of composite and pristine materials was evaluated by reusability properties until five cycles adsorption process followed with a determination of isotherms and adsorption thermodynamic properties. The results show composite has ten-fold surface area properties than starting materials. The adsorption capacities of CaAl-BC, CuAl-BC, and NiAl-BC at a temperature of 333 K were 156.250 mg/g, 149.254 mg/g, and 208.333 mg/g, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Backmatter (Publication Ethics, Copyright Transfer Agreement for Publishing Form)
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.3.16021.App.1-App.5

Abstract

The Combined Effect of Bubble and Photo Catalysis Technology in BTEX Removal from Produced Water Marwah Al-Nuaim; Asawer A. Al-Wasiti; Zainb Y. Shnain; Abbas K. Al-Shalal
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.3.15367.577-589

Abstract

Among the several ways used in wastewater treatment, the photocatalysis process is a more novel and alternative process that is increasingly employed in recent years. This work aims to improve the performance of the photocatalyst process by using air bubbles in removing the BTEX from produced water as an indicator of process efficiency. The study also shows the effect of influencing factors (pH and residence time) on the photocatalysis process. The study was done in a rectangular column with dimensions of 200 mm width, 30 mm depth, and 1500 mm height. Commercial titanium oxide (TiO2) coated on a plate by the varnish was used as a source of the photocatalyst. The experiment was carried out under different values of gas flow rate (0-3 L/min) to evaluate its effect on the photocatalyst process, the effect of other variables of pH (3-11), and irradiation time (30-120) min was also studied. A new method of the coating was adopted by using an alumina plate with varnish as an adhesive. The characteristics results show that the coated plate has hydrophilic properties and that there is no significant change in the crystal structure of the TiO2 nanoparticles and the varnish before and after 60 h of the photocatalytic process, indicating that the plate is still effective after 60 h usage under different conditions. The results also show that the introduction of air bubbles enhances the removal efficiency of BTEX significantly and the best removal effectiveness of BTEX was 93% when pH = 5 after 90 min and 90% when pH = 3 after 120 min. The removal rate also reached 86% when pH = 7 after 120 min all at a flow rate of 3 L/min. The percentage of removal decreased at pH = 9 and 11, reaching 64% and 50%, respectively after 120 min and a flow rate of 3 L/min. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Nickel Supported Parangtritis Beach Sand (PP) Catalyst for Hydrocracking of Palm and Malapari Oil into Biofuel Muh. Siddik Ibrahim; Wega Trisunaryanti; Triyono Triyono
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.3.15668.638-649

Abstract

Nickel supported Parangtritis beach sand (PP) catalyst for hydrocracking of palm and malapari oil into biofuel has been conducted. The impregnation process of Nickel (Ni) metal on PP was carried out through the dry impregnation method (blending) using a precursor salt of NiCl2.6H2O with variations of Ni metal as much as 10 and 15 wt% of PP which produced Ni(A) and Ni(B) catalysts. Each catalyst was tested for activity and selectivity through the hydrocracking process of oil into biofuel using a semi-batch system reactor at a temperature of 450 oC, a hydrogen gas flow rate of 20 mL/minute for 2 hours, and a weight ratio of 1:200 catalyst:feed (w/w). The results showed that the Ni(A)/PP catalyst had the highest activity and selectivity with the yield of liquid products and the total biofuel fraction (biohydrocarbons) obtained from hydrocracking of palm oil of 68.50 and 49.87 wt%, respectively. Ni(A)/PP catalyst has a total acidity, surface area, and crystal size of 0.051 mmol/g, 4.44 m2/g, 25.86 nm, respectively. The reusability test of the Ni(A)/PP catalyst in the hydrocracking process of palm oil into biofuel after the third use resulted in a liquid product and the total biofuel fraction obtained was 64.20 and 41.46 wt%, respectively. The yield of liquid product and the total fraction of biofuel (biohydrocarbon) in hydrocracking malapari oil were 66.10, 47.83 wt%, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Biomass Valorization to Chemicals over Cobalt Nanoparticles on SBA-15 Wega Trisunaryanti; Triyono Triyono; Elizabeth Selia Nandini; Endah Suarsih
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.3.15160.533-541

Abstract

A series of heterogeneous catalysts based on cobalt supported on SBA-15 were prepared through wet impregnation and co-impregnation assisted by ethylene glycol (EG) methods. The cobalt oxide catalysts generated after the drying and calcination process were denoted as CoO/SBA-15w and CoO/SBA-15c for a wet- and co-impregnation method, respectively. Subsequent to the reduction process, the reduced cobalt catalysts were obtained and denoted as Co/SBA-15w and Co/SBA-15c. The TEM images revealed the catalysts prepared through these methods show very clear distinctions that the catalyst prepared by wet impregnation shows large aggregates of cobalt particles on the external surface of SBA-15 due to their inability to enter the channels. The catalysts were evaluated on the hydrocracking of pyrolyzed -cellulose as a biomass model. The results showed that the reduced cobalt-based catalysts are having higher conversion value and selectivity towards the 2-furancarboxaldehyde reached ca. 20%. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0). 

Page 2 of 2 | Total Record : 16


Filter by Year

2022 2022


Filter By Issues
All Issue 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024) 2024: Just Accepted Manuscript and Article In Press 2024 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023) 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023) 2023: BCREC Volume 18 Issue 2 Year 2023 (August 2023) 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023) 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022) 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022) 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022) 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022) 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021) 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021) 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021) 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021) 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020) 2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020) 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020) 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019) 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019) 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019) 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018) 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018) 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018) 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017) 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017) 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017) 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016) 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016) 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016) 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015) 2015: BCREC Volume 10 Issue 2 Year 2015 (August 2015) 2015: BCREC Volume 10 Issue 1 Year 2015 (April 2015) 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014) 2014: BCREC Volume 9 Issue 2 Year 2014 (August 2014) 2014: BCREC Volume 9 Issue 1 Year 2014 (April 2014) 2013: BCREC Volume 8 Issue 2 Year 2013 (December 2013) 2013: BCREC Volume 8 Issue 1 Year 2013 (June 2013) 2013: BCREC Volume 7 Issue 3 Year 2013 (March 2013) 2012: BCREC Volume 7 Issue 2 Year 2012 (December 2012) 2012: BCREC Volume 7 Issue 1 Year 2012 (June 2012) 2011: BCREC Volume 6 Issue 2 Year 2011 (December 2011) 2011: BCREC Volume 6 Issue 1 Year 2011 (June 2011) 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010) 2010: BCREC Volume 5 Issue 1 Year 2010 (June 2010) 2009: BCREC Volume 4 Issue 2 Year 2009 (December 2009) 2009: BCREC Volume 4 Issue 1 Year 2009 (June 2009) 2008: BCREC Volume 3 Issue 1-3 Year 2008 (December 2008) 2007: BCREC: Volume 2 Issues 2-3 Year 2007 (October 2007) 2007: BCREC: Volume 2 Issue 1 Year 2007 (June 2007) More Issue