cover
Contact Name
Masri Ali
Contact Email
masri8020@gmail.com
Phone
+6281360650791
Journal Mail Official
journal@kawanad.com
Editorial Address
Jl. T Nyak Arief, Pasar Lamnyoeng Blok C Nomor 3, Banda Aceh, Provinsi Aceh, 23112
Location
Kota banda aceh,
Aceh
INDONESIA
jes
Published by Yayasan Kawanad
ISSN : 28288106     EISSN : 2828805X     DOI : https://doi.org/10.56347/jes
Core Subject : Engineering,
The Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. All published article URLs will have a digital object identifier (DOI).
Articles 5 Documents
Search results for , issue "Vol. 1 No. 1 (2022): January-June" : 5 Documents clear
Sistem Analisis Desain Pembangkit Listrik Tenaga Surya Kapasitas 50 WP Elvy Sahnur Nasution; Suriadi; Azhar
Journal of Engineering and Science Vol. 1 No. 1 (2022): January-June
Publisher : Yayasan Kawanad

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56347/jes.v1i1.1

Abstract

The need for electricity is good for the industry, offices, and public and individuals are greatly increased. However, the increase in demand for electricity is not accompanied by the additional power supply. Based on these problems, chosen solar energy as an alternative energy to generate electric power. A tool that is used here is the solar cell because it can directly convert solar radiation into electrical energy (photovoltaic process). So that solar energy can be used at night, then during the day, the electrical energy generated is stored before a battery which is controlled by the regulator. Regulator output is directly connected to the inverter from the DC to AC. The test results of solar modules (photovoltaic) indicated that the results of the average power output reached 38.24 Watt, and the currents were 2.49 A.  This is because the photovoltaic follows the direction of movement of the sun and always located at the photovoltaic to remain facing the sun. Therefore, it will still be able to capture the radiant sun to the fullest.
Limbah Tempurung Kelapa diuji Guna Menjadi Bahan Bakar Alternatif Arhami; M. Nizar Machmud; Masri Ali
Journal of Engineering and Science Vol. 1 No. 1 (2022): January-June
Publisher : Yayasan Kawanad

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56347/jes.v1i1.2

Abstract

Pyrolysis is a thermo-chemical which decomposition of organic material through heating process with absent or little oxygen (anaerobic). The purposes of study are design pyrolyzer of coconut shell being to alternative fuels, knowing much of oil from pyrolysis process with method of counter flow and parallel flow, and knowing heat energy or caloric energy which was produced from pyrolysis process with method of counter flow and parallel flow in condenser. The research with through experiments the pyrolyzer which includes reactor, distribution pipe, and condenser. Research methods are the experiment of pyrolysis process at temperature 35oC during 60 minutes with condensation method, counter flow and parallel flow. Results of experiments are data of gas fuels mass obtained 42 grams which used pyrolysis process of coconut shell in the amount of 1000 gr, until produces pyrolysis oil as 198 grams (counter flow) and 196 grams (parallel flow). Counter flow method can absorb a heat as 1304,762 kJ and heat loss through gasses as 462,842 kJ, even though parallel flow no more than absorb as 1200,83 kJ and heat loss through gasses as 545,271 kJ.
Bahan Bakar Minyak Dari Berbagai Metode Konversi Sampah Plastik Masri Ibrahim; M. Nizar Machmud; Masri Ali
Journal of Engineering and Science Vol. 1 No. 1 (2022): January-June
Publisher : Yayasan Kawanad

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56347/jes.v1i1.3

Abstract

The use of plastic and goods made of plastic have been rising in day to day. Increasing use of plastics is a consequence of the development of technology, industry and population. On one hand, the invention of plastic has a remarkable positive impact, because it has many advantages compared to other materials. But on the other hand, the plastic waste has negative impact that too worried, so its solutions need to be looked for. One of the alternative handling of plastic waste that currently extensively researched and developed is converting plastic waste into fuel. Converting plastic waste into fuel oil can be done with cracking process. There are three kinds of process that is hydro cracking, thermal cracking and catalytic cracking. Fuel oil produced from the cracking of plastic waste depending on the plastic type, cracking process used, catalyst type, pyrolisis temperature and condenser temperature.
Kegagalan Permukaan Kontak Rail dan Wheel pada Overhead Travelling Crane Azhar; Ajinar; Zainuddin
Journal of Engineering and Science Vol. 1 No. 1 (2022): January-June
Publisher : Yayasan Kawanad

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56347/jes.v1i1.4

Abstract

For the sake of the smooth process of cement production, it is necessary to maintain each component of the production. One of the tools that play an important role in the maintenance and production of cement is the Overhead Traveling Crane, which is a combination of a separate lifting mechanism with a frame to lift and move loads that can be hung freely or attached to the crane itself. The problems that arise in the Overhead Traveling Crane include the reverse direction of the motor rotation due to an error in the motor connection, the motor cannot start due to a disconnected power supply, the occurrence of bending (curving) on ​​the girder due to lifting operations that exceed the maximum capacity which can also accelerate service life. of the girder, wear on the wheel due to high workload during operation. Due to the need for very long use, periodic maintenance is needed so that it can be in normal condition for a long time. The main parts that support the overall weight of the crane are rails and wheels. This journal discusses the analysis of failures that occur due to contact between rails and wheels that occur in a cement factory. Failure analysis is done by testing the hardness of both the wheel and the rely which is considered to have failed or is no longer suitable for use. Then review the results of direct field observations with data from hardness tests and literature studies related to wheels and rails. after that it was concluded that the company considered for the procurement of rails and wheels. The conclusion obtained is that the hardness value on the rail is lower than on the wheel. Resulting in failure of the rail so that the rail must be replaced.
Perhitungan Struktur Laboratorium Teknik Sipil Type II Fakultas Teknik Universitas Muhammadiyah (UMSU) Medan Randi Gunawan; Irma Dewi; Muhammad Husin Gultom; Ajinar
Journal of Engineering and Science Vol. 1 No. 1 (2022): January-June
Publisher : Yayasan Kawanad

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56347/jes.v1i1.5

Abstract

The lack of supporting infrastructure facilities such as the Laboratory at Samudra University, especially in the Civil Engineering Study Program, Faculty of Engineering, has resulted in Iskandar Thani Institute having to work hard in building infrastructure to keep pace with advances in technology and science. This study aims to plan the dimensions and reinforcement of beams, columns, plates and stairs in the Civil Engineering Laboratory building. The laboratory building to be analyzed has a total of 3 floors with floor dimensions of 43 m x 27.49 m. Modeling and analysis of the structure of this building is assisted by the SAP2000 program using the Special Moment Bearing Frame System (SPRMK) and is designed according to SNI 03-1726-2012, SNI 03-2847-2013, and PPPURG 1987. The structure is planned to use concrete quality fc' 30 MPa and steel grade fy 400 MPa. The results of the analysis obtained that the floor slab thickness was 13 cm using D10-200 mm reinforcement for main reinforcement and D10-300 mm for split reinforcement. The thickness of the roof slab is 12 cm using D10-200 mm reinforcement for main reinforcement and D10-300 mm for split reinforcement. The dimensions of the B1 beam are 50 cm x 70 cm using 12D25 for the support area with D10-80 mm braces and 8D25 reinforcement for the field area with D10-120 mm braces. Begel B2 30 cm x 50 cm using 4D25 reinforcement for the support area and field with braces for D10-200 mm field and braces for D10-100 mm support. The dimensions of the K1 column are 60 cm x 80 cm using 10D25 reinforcement with D10-300 mm begel. The dimensions of the K2 column are 60 cm x 60 cm using 8D25 reinforcement with D10 -200 mm begel. The thickness of the ladder plate and landing was obtained 13 cm using D10-200 mm reinforcement.

Page 1 of 1 | Total Record : 5