cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Bahan Alam Terbarukan
ISSN : 23030623     EISSN : 24072370     DOI : -
Core Subject : Science,
This journal presents articles and information on research, development and applications in biomass conversion processes (thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion) and equipment to produce fuels, power, heat, and value-added chemicals from biomass. A biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstock. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol (see also alcohol fuel). The high-value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce greenhouse gas emissions from traditional power plant facilities. Future biorefineries may play a major role in producing chemicals and materials that are traditionally produced from petroleum.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 2, No 2 (2013): December 2013" : 12 Documents clear
PEWARNA ALAMI BATIK DARI KULIT SOGA TINGI (Ceriops tagal) DENGAN METODE EKSTRAKSI Handayani, Prima Astuti; Maulana, Ivon
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2793

Abstract

Synthetic coloring techniques shift the natural coloring techniques because the process is much easier, and the resulting color is more diverse. However, it comes into doubts if the synthetic color materials is continuously used because the produced waste harms the human health and indirectly polutes the environment. Hence, the bark of soga tingi which contains tanin as natural coloring subtances can be used as a substitute for synthetic dyes for Batiks. The extraction of tanin from the soga tingi bark is carried out in the refluxed equipment set. The materials used in the study consist of ethanol, aquadest, soga tingi bark, alum, lime, and tunjung. The experiment is done by varying the solvents and the extraction time. The solvent of ethanol-aquadest used in the experiment varied at the ethanol concentration of 96%, 70%, 30%, and without ethanol. The bark of soga tingi is dried and crushed into powder. The ratio of materials and solvent used in the experiment is 1:4 m/v. The extraction run at temperature of 700 oC for 3 hours. The coloring substances is subsequently analyzed by UV-Vis spectrophotometry. The coloring substances made of soga tingi bark is applied by adding other key components such as alum, lime, and tunjung. The experimental results show the extraction of tanin from soga tingi bark yield the highest tanin (24,343 ppm) when solvent of 96% ethanol is used. Moreover, the extraction for 3 hours yield higher tanin concentration than 2 hours. This dye has been applied on the fabric using 3 types of key substances. To the key substances in form of tunjung produce black color, lime produces a brown color, and alum produces a reddish-brown color.
PEMBUATAN ASAM OKSALAT DARI SEKAM PADI DENGAN HIDROLISIS BERKATALISATOR NaOH DAN Ca(OH)2 Mardina, Primata; -, Norhayani; Triutami, Dessy
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2794

Abstract

Rice husk is a major by-product of the rice milling industries. Rice husk  is one of the most common  lignocellulosic materials those can be converted to oxalic acid by alkaline hydrolysis. This research investigated the effect of  the alkaline catalysts at specified temperature and reaction time on the efficiency of  process and  yield of oxalic acid. Oxalic acid was produced by four processes; alkaline hydrolysis, precipitation, acidification, and crystalization. Washed and dryed rice husk was crushed  to obtain 0.25 mm diameterl particles. The main process was performed by dissolving and hydrolyzing 125 grams of rice husk in 500 mL of 3.5 N NaOH and Ca(OH)2. Rice husk, which hydrolyzed by NaOH, was  precipated with CaCl2 before acidification, whereas rice husk, which hydrolyzed by Ca(OH)2 directly acidified by sulphuric acid without precipitation process. Furthermore, water in acidified solution was evaporated to obtain crystal of oxalic acid. The result showed the alkaline catalyst Ca(OH)2 was more eficient than NaOH for hydrolysis. It omitted precipitation process. The highest yield of oxalic acid which produced by Ca(OH)2 catalyzed hydrolysis was 2.232%  at 60oC for 60 minutes.
TEORI DASAR SIMULASI PROSES PEMBAKARAN LIMBAH VINASSE DARI INDUSTRI ALKOHOL BERBASIS CFD Triwibowo, Bayu
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2795

Abstract

In the midst of restrictions issue on the use of fossil fuels, the world began to move towards the use of renewable fuels. One such fuel is bio-ethanol. Production of bio-ethanol itself leaves vinasse wastetreatment problems with large discharge. There have been many ways to treat vinasse one of which is the burning of concentrated vinasse. Combustion process is a complex process in terms physical and chemical. Complex phenomenon will be difficult to be analyzed simultaneously and comprehensively when using conventional techniques. Simulation of combustion process based on CFD can be one such solution. In the case of vinasse as fuel and air as oxydizer the selected combustion model is a non-premixed combustion models with probability density function.
METODE ESTIMASI PROPERTI KRITIS UAP-CAIR KOMPONEN MURNI ESTER Hartantoa, Dhoni; Rahayu, Ibnu Eka; Wibowo, Bayu Tri
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2796

Abstract

Biodiesel become eco-friendly renewable energy resources which is consisted of monoalkyl ester or long chain fatty acid from plants or animal. Biodiesel has more advantage than petrodiesel. Property of pure compound such as critical properties are the important thing to determine chemical mixtures behavior and also as base of equation of state. Joback method can show good results in estimating critical properties of monoalkyl ester.
PEWARNA ALAMI BATIK DARI KULIT SOGA TINGI (Ceriops tagal) DENGAN METODE EKSTRAKSI Handayani, Prima Astuti; Maulana, Ivon
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2793

Abstract

Synthetic coloring techniques shift the natural coloring techniques because the process is much easier, and the resulting color is more diverse. However, it comes into doubts if the synthetic color materials is continuously used because the produced waste harms the human health and indirectly polutes the environment. Hence, the bark of soga tingi which contains tanin as natural coloring subtances can be used as a substitute for synthetic dyes for Batiks. The extraction of tanin from the soga tingi bark is carried out in the refluxed equipment set. The materials used in the study consist of ethanol, aquadest, soga tingi bark, alum, lime, and tunjung. The experiment is done by varying the solvents and the extraction time. The solvent of ethanol-aquadest used in the experiment varied at the ethanol concentration of 96%, 70%, 30%, and without ethanol. The bark of soga tingi is dried and crushed into powder. The ratio of materials and solvent used in the experiment is 1:4 m/v. The extraction run at temperature of 700 oC for 3 hours. The coloring substances is subsequently analyzed by UV-Vis spectrophotometry. The coloring substances made of soga tingi bark is applied by adding other key components such as alum, lime, and tunjung. The experimental results show the extraction of tanin from soga tingi bark yield the highest tanin (24,343 ppm) when solvent of 96% ethanol is used. Moreover, the extraction for 3 hours yield higher tanin concentration than 2 hours. This dye has been applied on the fabric using 3 types of key substances. To the key substances in form of tunjung produce black color, lime produces a brown color, and alum produces a reddish-brown color.
PEMBUATAN ASAM OKSALAT DARI SEKAM PADI DENGAN HIDROLISIS BERKATALISATOR NaOH DAN Ca(OH)2 Mardina, Primata; -, Norhayani; Triutami, Dessy
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2794

Abstract

Rice husk is a major by-product of the rice milling industries. Rice husk  is one of the most common  lignocellulosic materials those can be converted to oxalic acid by alkaline hydrolysis. This research investigated the effect of  the alkaline catalysts at specified temperature and reaction time on the efficiency of  process and  yield of oxalic acid. Oxalic acid was produced by four processes; alkaline hydrolysis, precipitation, acidification, and crystalization. Washed and dryed rice husk was crushed  to obtain 0.25 mm diameterl particles. The main process was performed by dissolving and hydrolyzing 125 grams of rice husk in 500 mL of 3.5 N NaOH and Ca(OH)2. Rice husk, which hydrolyzed by NaOH, was  precipated with CaCl2 before acidification, whereas rice husk, which hydrolyzed by Ca(OH)2 directly acidified by sulphuric acid without precipitation process. Furthermore, water in acidified solution was evaporated to obtain crystal of oxalic acid. The result showed the alkaline catalyst Ca(OH)2 was more eficient than NaOH for hydrolysis. It omitted precipitation process. The highest yield of oxalic acid which produced by Ca(OH)2 catalyzed hydrolysis was 2.232%  at 60oC for 60 minutes.
TEORI DASAR SIMULASI PROSES PEMBAKARAN LIMBAH VINASSE DARI INDUSTRI ALKOHOL BERBASIS CFD Triwibowo, Bayu
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2795

Abstract

In the midst of restrictions issue on the use of fossil fuels, the world began to move towards the use of renewable fuels. One such fuel is bio-ethanol. Production of bio-ethanol itself leaves vinasse wastetreatment problems with large discharge. There have been many ways to treat vinasse one of which is the burning of concentrated vinasse. Combustion process is a complex process in terms physical and chemical. Complex phenomenon will be difficult to be analyzed simultaneously and comprehensively when using conventional techniques. Simulation of combustion process based on CFD can be one such solution. In the case of vinasse as fuel and air as oxydizer the selected combustion model is a non-premixed combustion models with probability density function.
METODE ESTIMASI PROPERTI KRITIS UAP-CAIR KOMPONEN MURNI ESTER Hartantoa, Dhoni; Rahayu, Ibnu Eka; Wibowo, Bayu Tri
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2796

Abstract

Biodiesel become eco-friendly renewable energy resources which is consisted of monoalkyl ester or long chain fatty acid from plants or animal. Biodiesel has more advantage than petrodiesel. Property of pure compound such as critical properties are the important thing to determine chemical mixtures behavior and also as base of equation of state. Joback method can show good results in estimating critical properties of monoalkyl ester.
PEWARNA ALAMI BATIK DARI KULIT SOGA TINGI (Ceriops tagal) DENGAN METODE EKSTRAKSI
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2793

Abstract

Synthetic coloring techniques shift the natural coloring techniques because the process is much easier, and the resulting color is more diverse. However, it comes into doubts if the synthetic color materials is continuously used because the produced waste harms the human health and indirectly polutes the environment. Hence, the bark of soga tingi which contains tanin as natural coloring subtances can be used as a substitute for synthetic dyes for Batiks. The extraction of tanin from the soga tingi bark is carried out in the refluxed equipment set. The materials used in the study consist of ethanol, aquadest, soga tingi bark, alum, lime, and tunjung. The experiment is done by varying the solvents and the extraction time. The solvent of ethanol-aquadest used in the experiment varied at the ethanol concentration of 96%, 70%, 30%, and without ethanol. The bark of soga tingi is dried and crushed into powder. The ratio of materials and solvent used in the experiment is 1:4 m/v. The extraction run at temperature of 700 oC for 3 hours. The coloring substances is subsequently analyzed by UV-Vis spectrophotometry. The coloring substances made of soga tingi bark is applied by adding other key components such as alum, lime, and tunjung. The experimental results show the extraction of tanin from soga tingi bark yield the highest tanin (24,343 ppm) when solvent of 96% ethanol is used. Moreover, the extraction for 3 hours yield higher tanin concentration than 2 hours. This dye has been applied on the fabric using 3 types of key substances. To the key substances in form of tunjung produce black color, lime produces a brown color, and alum produces a reddish-brown color.
PEMBUATAN ASAM OKSALAT DARI SEKAM PADI DENGAN HIDROLISIS BERKATALISATOR NaOH DAN Ca(OH)2
Jurnal Bahan Alam Terbarukan Vol 2, No 2 (2013): December 2013
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v2i2.2794

Abstract

Rice husk is a major by-product of the rice milling industries. Rice husk  is one of the most common  lignocellulosic materials those can be converted to oxalic acid by alkaline hydrolysis. This research investigated the effect of  the alkaline catalysts at specified temperature and reaction time on the efficiency of  process and  yield of oxalic acid. Oxalic acid was produced by four processes; alkaline hydrolysis, precipitation, acidification, and crystalization. Washed and dryed rice husk was crushed  to obtain 0.25 mm diameterl particles. The main process was performed by dissolving and hydrolyzing 125 grams of rice husk in 500 mL of 3.5 N NaOH and Ca(OH)2. Rice husk, which hydrolyzed by NaOH, was  precipated with CaCl2 before acidification, whereas rice husk, which hydrolyzed by Ca(OH)2 directly acidified by sulphuric acid without precipitation process. Furthermore, water in acidified solution was evaporated to obtain crystal of oxalic acid. The result showed the alkaline catalyst Ca(OH)2 was more eficient than NaOH for hydrolysis. It omitted precipitation process. The highest yield of oxalic acid which produced by Ca(OH)2 catalyzed hydrolysis was 2.232%  at 60oC for 60 minutes.

Page 1 of 2 | Total Record : 12


Filter by Year

2013 2013


Filter By Issues
All Issue Vol 12, No 1 (2023): June 2023 [Nationally Accredited - Sinta 2] Vol 11, No 2 (2022): December 2022 [Nationally Accredited - Sinta 2] Vol 11, No 1 (2022): June 2022 [Nationally Accredited - SINTA 2] Vol 10, No 2 (2021): December 2021 [Nationally Accredited - Sinta 2] Vol 10, No 1 (2021): June 2021 [Nationally Accredited - SINTA 2] Vol 9, No 2 (2020): December 2020 [Nationally Accredited - Sinta 2] Vol 9, No 1 (2020): June 2020 [Nationally Accredited - Sinta 2] Vol 8, No 2 (2019): December 2019 [Nationally Accredited - Sinta 2] Vol 8, No 1 (2019): June 2019 [Nationally Accredited - Sinta 2] Vol 7, No 2 (2018): December 2018 [Nationally Accredited] Vol 7, No 1 (2018): June 2018 [Nationally Accredited] Vol 6, No 2 (2017): December 2017 [Nationally Accredited] Vol 6, No 1 (2017): June 2017 [Nationally Accredited] Vol 6, No 1 (2017): June 2017 [Nationally Accredited] Vol 5, No 2 (2016): December 2016 [Nationally Accredited] Vol 5, No 2 (2016): December 2016 [Nationally Accredited] Vol 5, No 1 (2016): June 2016 [Nationally Accredited] Vol 5, No 1 (2016): June 2016 [Nationally Accredited] Vol 4, No 2 (2015): December 2015 Vol 4, No 2 (2015): December 2015 Vol 4, No 1 (2015): June 2015 Vol 4, No 1 (2015): June 2015 Vol 3, No 2 (2014): December 2014 Vol 3, No 2 (2014): December 2014 Vol 3, No 1 (2014): June 2014 Vol 3, No 1 (2014): June 2014 Vol 2, No 2 (2013): December 2013 Vol 2, No 2 (2013): December 2013 Vol 2, No 1 (2013): June 2013 Vol 2, No 1 (2013): June 2013 Vol 1, No 2 (2012): December 2012 Vol 1, No 2 (2012): December 2012 Vol 1, No 1 (2012): June 2012 Vol 1, No 1 (2012): June 2012 More Issue