cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
Published by Universitas Diponegoro
ISSN : -     EISSN : 19782993     DOI : -
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Arjuna Subject : -
Articles 524 Documents
Selective Synthesis, Characterization and Kinetics Studies of poly(α-Methyl styrene) induced by Maghnite-Na+ Clay (Algerian MMT) Moulkheir Ayat; Mohamed Belbachir; Abdelkader Rahmouni
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (845.094 KB) | DOI: 10.9767/bcrec.11.3.578.376-388

Abstract

A new and efficient catalyst of Na-Montmorillonite (Na+-MMT) was employed in this paper for α-methylstyrene (AMS) cationic polymerization. Maghnite clay, obtained from Tlemcen Algeria, was investigated to remove heavy metal ion from wastewater. “Maghnite-Na” is a Montmorillonite sheet silicate clay, exchanged with sodium as an efficient catalyst for cationic polymerization of many vinylic and heterocyclic monomers. The various techniques, including 1H-NMR, 13C-NMR, IR, DSC and Ubbelohde viscometer, were used to elucidate structural characteristics and thermal properties of the resulting polymers. The structure compositions of “MMT”, “H+-MMT” and “Na+-MMT” have been developed. It was found that the cationic polymerization of AMS is initiated by Na+-MMT at 0 °C in bulk and in solution. The influences of reaction temperature, solvent, weight ratio of initiator/monomer and reaction time on the yield of monomer and the molecular weight are investigated. The kinetics indicated that the polymerization rate is first order with respect to the monomer concentration. A possible mechanism of this cationic polymerization is discussed based on the results of the 1H-NMR Spectroscopic analysis of these model reactions. A cationic mechanism for the reaction was proposed. From the mechanism studies, it was showed that monomer was inserted into the growing chains.
Sustainable Catalytic Process for Synthesis of Triethyl Citrate Plasticizer over Phosphonated USY Zeolite Kakasaheb Y. Nandiwaleand; Vijay V. Bokade
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (553.42 KB) | DOI: 10.9767/bcrec.11.3.569.292-298

Abstract

Fruits wastage is harmful to health and environment concerning spreading diseases and soil pollution, respectively. To avoid this issue, use of citrus fruit waste for the production of citric acid (CA) is one of viable mean to obtain value added chemicals. Moreover, synthesis of triethyl citrate (TEC), a non-toxic plasticizer by esterification of CA with ethanol over heterogeneous catalyst would be renewable and sustainable catalytic process. In this context, parent Ultrastable Y (USY) and different percentage phosphonated USY (P-USY) zeolites were used for the synthesis of TEC in a closed batch reactor, for the first time. The synthesized catalysts were characterized by N2-adsorption desorption isotherm, powder X-ray diffraction (XRD) and NH3 temperature programmed desorption (TPD. Effect of reaction conditions, such as the molar ratio of ethanol to CA (5:1 - 20:1), the catalyst to CA ratio (0.05 - 0.25) and reaction temperature (363-403 K), were studied in view to maximizing CA conversion and TEC yield. Phosphonated USY catalysts were found to be superior in activity (CA conversion and TEC yield) than parent USY, which is attributed to the increased in total acidity with phosphonation. Among the studied catalysts, the P2USY (2% phosphorous loaded on USY) was found to be an optimum catalyst with 99% CA conversion and 82% TEC yield, which is higher than the reported values. This study opens new avenues of research demonstrating principles of green chemistry such as easy separable and reusable catalyst, non-toxic product, bio-renewable synthetic route, milder operating parameters and waste minimization. 
Synthesis and Characterization of Pure and Nano-Ag Impregnated Chitosan Beads and Determination of Catalytic Activities of Nano-Ag Zahoor Ahmad; Maryam Maqsood; Mazher Mehmood; Mirza Jameel Ahmad; Muhammad Aziz Choudhary
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (90.312 KB) | DOI: 10.9767/bcrec.12.1.860.127-135

Abstract

The synthesis of nano-Ag impregnated porous Chitosan beads, in crosslinked and uncrosslinked forms, was aimed to investigate their catalytic potential in reducing nitro group into amino by NaBH4. The material was found unique concerning the synthesis of well-defined Ag NPs and subsequently adsorbing them on its surface. The crosslinked and uncrosslinked chitosan beads were separately analyzed for the loading of Ag and its effect over the microstructures of the substrate. BET was used to explore the porous nature and pore size distributions of beads. At each stage, SEM coupled with EDX, FT-IR, and inductively coupled plasma (ICP) were employed to characterize the material. The catalytic activities of nano-Ag in crosslinked and uncrosslinked beads were determined by the reduction of 4-Nitrophenol (4-NP) into 4-aminophenol (4-AP) by NaBH4; which is least effective for such reduction. The catalytic activities were monitored by UV-Vis spectrophotometer. The results demonstrated the nano-Ag as a reliable and active catalyst which made NaBH4 quite capable for the nitro reduction. Moreover, the catalytic activities of crosslinked chitosan substrate were found more reproducible as compared to the uncrosslinked substrate. 
Effect of Calcination Temperature on Performance of Photocatalytic Reactor System for Seawater Pretreatment Weerana Eh Kan; Jamil Roslan; Ruzinah Isha
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (391.341 KB) | DOI: 10.9767/bcrec.11.2.554.230-237

Abstract

Conservative desalination technology including distillation requires high energy and cost to operate. Hence, pretreatment process can be done prior to desalination to overcome energy demand and cost reduction. Objective of this research is to study the effect of calcination temperature of hybrid catalyst in photocatalytic reactor system in the seawater desalination, i.e. salt removal in the seawater. The catalyst was synthesized via wet impregnation method with 1:1 weight ratio of TiO2 and activated oil palm fiber ash (Ti:Ash). The catalyst was calcined at different temperature, i.e. 500 oC and 800 oC. The study was carried out in a one liter Borosilicate photoreactor equipped with mercury light of 365 nanometers for two hours with 400 rpm mixing and catalyst to seawater sample weight ratio of 1:400. The Chemical Oxygen Demand (COD), pH, dissolved oxygen (DO), turbidity and conductivity of the seawater were analyzed prior and after the testing. The fresh and spent catalysts were characterized via X-Ray Diffractogram (XRD and Nitrogen physisorption analysis. The calcination temperature significantly influenced the adsorption behaviour and photocatalytic activity. However, Ti:Ash which calcined at 800 oC has less photocatalytic activity. It might be because the surface of fiber ash was sintered after calcined at high temperature. The Ti:Ash catalyst that calcined at 500 oC was found to be the most effective catalyst in the desalination of seawater by reducing the salt concentration of more than 9 % compared to Ti:Ash calcined at 800 oC. It can be concluded that catalyst calcination at 500 °C has better character, performance and economically feasible catalyst for seawater desalination. 
Preparation of Biofuel from Palm Oil Catalyzed by Ammonium Molybdate in Homogeneous Phase Sepehr Sadighi; Seyed Kamal Masoudian Targhi
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (379.309 KB) | DOI: 10.9767/bcrec.12.1.486.49-54

Abstract

Producing transportation fuels from bio sources was of prime importance due to the strict environmental legislations for producing clean fuels from conventional oil resources. However, the economical impacts of the biofuel production should be considered. In this study, the production of bio-naphtha and biodiesel from palm oil using homogeneous catalyst, i.e. an aqueous phase of ammonium molybdate, was studied. This catalyst was prepared by dissolving sodium molybdate in de-ionized water with hydrochloric acid, and then neutralizing the mixture with ammonium hydroxide. The solution was dried at 90 °C for 24 h to obtain ammonium molybdate. Then, characterization of the catalyst was done by informative techniques, such as XRD and FT-IR. The results showed that the main phase of the synthesized catalyst was molybdate ammonium hydrates (4MoO3.2NH3.H2O), and also bands of Mo–O, Mo–O–Mo, N–H and surface hydroxyl groups were observed in the sample. Moreover, activity test confirms that the bio-naphtha produced from the proposed method has a few aromatic components, and its sulfur content was negligible. Moreover, ash, nitrogen, sulfur and carbon residue were not detected in the produced biodiesel, and its Cetane index was 66.3. Therefore, it was a suitable fuel for diesel engines vehicles. 
New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+) as a Green Solid Catalyst Lahouaria Medjdoub; Belbachir Mohammed
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (699.554 KB) | DOI: 10.9767/bcrec.11.2.541.151-160

Abstract

Nucleophilic substitution on hexachlorocyclotriphosphazene (HCCTP) with allylamine in order to give hexa(allylamino)cyclotriphosphazene (HACTP)  is performed for the first time under mild conditions by using diethylether as solvent to replace benzene which is very toxic. The reaction time is reduced to half and also performed at room temperature but especially in the presence of an eco-catalyst called Maghnite-H+. This catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. Then, Maghnite-H+ is became an excellent catalyst for many chemical reactions. The structure of HACTP synthesized in the presence of Maghnite-H+ to 5% by weight is confirmed by 1H-NMR, 13C-NMR, 31P-NMR (Nuclear magnetic resonance) and FTIR (Fourier Transform Infrared spectroscopy). MALDI-TOF (Matrix-Assisted Laser Desorption/Ionisation-time-of-flight mass spectrometry) is used to establish the molecular weight of HACTP which is 471 g/mol. DSC (Differential Scanning Calorimetery) and TGA (Thermogravimetric Analysis) show that HACTP is a crystalline product with a melting point of 88 °C. It is reactive after melting but is degraded from 230 °C. 
Physicochemical and Photocatalytic Properties of Fe-Pillared Bentonite at Various Fe Content Is Fatimah; Yuyun Yunani Nurkholifah
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (894.075 KB) | DOI: 10.9767/bcrec.11.3.456.398-405

Abstract

Iron-pillared bentonites (Fe/Bents) were successfully prepared using a ferric chloride precursor. The prepared samples were characterized using XRD, BET and SEM-EDX. The results show that the pillared bentonite physicochemical character is affected by the iron content in a precursor solution. By Fe content variation it is found that Fe content in Fe/Bents is not linearly correlated with the specific surface area and the increased in d001 in which both the maximum specific surface are and d001 reach maximum at the Fe content of 20 mmol/g. Due to the kinetics of photocatalytic activity in phenol removal, it is concluded that in photo-Fenton-like processes.
Enzymatic Phorbol Esters Degradation using the Germinated Jatropha Curcas Seed Lipase as Biocatalyst: Optimization Process Conditions by Response Surface Methodology Avita Kusuma Wardhani; Chusnul Hidayat; Pudji Hastuti
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (468.334 KB) | DOI: 10.9767/bcrec.11.3.574.346-353

Abstract

Utilization of Jatropha curcas seed cake is limited by the presence of phorbol esters (PE), which are the main toxic compound and heat stable. The objective of this research was to optimize the reaction conditions of the enzymatic PE degradation of the defatted Jatropha curcas seed cake (DJSC) using the acetone-dried lipase from the germinated Jatropha curcas seeds as a biocatalyst. Response Surface Methodology (RSM) using three-factors-three-levels Box-Behnken design was used to evaluate the effects of the reaction time, the ratio of buffer volume to DJSC, and the ratio of enzyme to DJSC on PE degradation. The results showed that the optimum conditions of PE degradation were 29.33 h, 51.11 : 6 (mL/g), and 30.10 : 5 (U/g cake) for the reaction time, the ratio of buffer volume to DJSC, and the ratio of enzyme to DJSC, respectively. The predicted degradation of PE was 98.96% and not significantly different with the validated data of PE degradation. PE content was 0.035 mg/g, in which it was lower than PE in non-toxic Jatropha seeds. The results indicated that enzymatic degradation of PE might be a promising method for degradation of PE. 
Preface of BCREC Volume 11 Issue 2 Year 2016 Istadi, Istadi
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (169.915 KB) | DOI: 10.9767/bcrec.11.2.565.v-vii

Abstract

Preface of BCREC Volume 11 Issue 2 Year 2016DOI: 10.9767/bcrec.11.2.565.v-vii
Variability of Data in High Throughput Experimentation for Catalyst Studies in Fuel Processing Niels T.J. Luchters; J. V. Fletcher; S. J. Roberts; J. C. Q. Fletcher
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (623.241 KB) | DOI: 10.9767/bcrec.12.1.708.106-112

Abstract

The use of high throughout and combinatorial experimentation is becoming commonplace in catalytic research. The benefits of parallel experiments are not only limited to reducing the time-to-market, but also give an opportunity to study processes in more depth, by generating more data. To investigate the complete parameter space, multiple experiments must be performed and the variability between these experiments must be quantifiable. In this project, the reproducibility and variance in high throughput catalyst preparation and parallel testing were determined. High-performance equipment was used in a catalyst development program for fuel processing, the production of fuel cell-grade hydrogen from hydrocarbon fuels. Four studies, involving water-gas shift conversion and high-temperature steam methane reforming, were performed to determine the reproducibility of the workflow from automated catalyst preparation to parallel activity testing. Statistical analyses showed the standard deviation in catalytic activities as determined by conversion, to be less than 6% of the average value.  

Page 4 of 53 | Total Record : 524


Filter by Year

2016 2023