Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Applied Engineering and Technological Science (JAETS)

The Effect Of Heating Temperature On The Hardness, Microstructure And V-Bending Spring Back Results On Commercial Steel Plate Asep Ruchiyat; Muh Anhar; Yusuf Yusuf; Betti Ses Eka Polonia
Journal of Applied Engineering and Technological Science (JAETS) Vol. 1 No. 1 (2019): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1305.751 KB) | DOI: 10.37385/jaets.v1i1.10

Abstract

The need for low carbon steel plate sheets with relatively thin thickness measurements in Indonesia is currently quite high, especially in supporting the automotive industry, the electronics industry, the food industry, beverages, and household appliances. To fulfill this, raw materials for low carbon steel plate sheets that have high formability and are not easily cracked in critical areas of the desired model are required. For this reason, research on the effect of temperature variations in heat treatment on hardness, microstructure and spring back of V-bending results on steel plates with a plate thickness of 0.8 mm. The research method used was a laboratory experimental method. The heat treatment is carried out with temperature variations of 710, 820 and 9300C with a holding time of 60 minutes. Tests carried out on specimens are hardness testing, microstructure testing, and spring back V-bending results on steel plates. The results of this study indicate a decrease in the spring back angle where the smallest spring back angle in the bending process is on the 9300C plate which is 1,040. The value of the hardness results from V-bending has increased significantly. The increase in the value of hardness because the plate has an atom shift or dislocation by shear stress (slip) due to plastic deformation on the plate. The highest hardness value is on the 7100C plate which is 154.67 HV or has an increase of 14,291% of the pre-bending plate. The lowest hardness value is on the 9300C plate which is 125.33 HV, its hardness increases 4.4% against the pre-bending plate. Heat treatment also causes changes in the microstructure of the plates from the process of regulation and reshaping of crystals to the growth of new grains which have implications for changes in mechanical properties and formability of the workpiece.
The Effect Of Addition Of Limestone Powder And Gypsum As Isolator Media On Low Carbon Steel SMAW Welding Muh Anhar; Betti Ses Eka Polonia
Journal of Applied Engineering and Technological Science (JAETS) Vol. 2 No. 2 (2021): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (638.489 KB) | DOI: 10.37385/jaets.v2i2.223

Abstract

Metal connection due to heat with or without the influence of pressure or metallurgical bonds caused by attractive forces between atoms. DIN (Deutsche Industrie Normen) state that metallurgical bonding of metal or guide metal joints in a melted or liquid state. This study aims to determine the effect of limestone powder and gypsum as an insulating medium in SMAW (Shielded metal arc welding) welding. This study using experimental methods with SMAW welding. Welding metal cooled with limestone media has a harder hardness than gypsum and air media, which is limestone has a thermal conductivity value of 3.897 W / mºC. In comparison, gypsum has a thermal conductivity value of 1.39 W/mºC, and air has a thermal conductivity value of 0.023 J/msºC, so limestone is a better insulator than gypsum and air. The greater the conductivity value of the object, the better the thermal conductivity of the metal and the more complicated the weld metal and the lower the thermal conductivity value, the softer the metal hardness, limestone has a thermal conductivity value of 3.897 W / mºC while gypsum has a thermal conductivity value of 1, 39 W / mºC and air have a thermal conductivity value of 0.023 J / msºC, proving that the lower the conductivity value, the hardness of the weld metal is getting softer, but in the HAZ section it proves that the lower the conductivity value, the more complex the hardness in the HAZ section.