Claim Missing Document
Check
Articles

Found 12 Documents
Search

The Resistance Comparison Method Using Integral Controller for Photovoltaic Emulator Razman Ayop; Chee Wei Tan; Cheng Siong Lim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (870.482 KB) | DOI: 10.11591/ijpeds.v9.i2.pp820-828

Abstract

A Photovoltaic (PV) emulator is a device that produces a similar output as the PV module and it is useful for testing the PV generation system. This paper present a new and simple control strategy for the PV emulator using the combination of the Resistance Comparison Method with the Integral Controller. The closed-loop buck converter system with the current-mode controlled and the single diode model are used for the PV emulator. The results obtained from the proposed PV emulator are compared with the conventional PV emulator using the Direct Referencing Method as the control strategy. The proposed PV emulator produces a more accurate output, 74 % faster transient response, and a lower output voltage ripple compared to the conventional PV emulator.
The performances of partial shading adjuster for improving photovoltaic emulator Razman Ayop; Chee Wei Tan; Syed Norazizul Syed Nasir; Mohd Zaki Daud; Lau Kwan Yiew; Norjulia Mohamad Nordin; Abba Lawan Bukar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i1.pp528-536

Abstract

A photovoltaic (PV) emulator (PVE) is essential equipment for the research and diagnostic of PV generation. It is a convenient, highly efficient, and low-cost approach when compared to controllable light sources. Nonetheless, the implementation of the partial shading capability in a PVE is highly limited in terms of efficiency, computation burned, number of power converters, and flexibility to change in the ambient condition. This paper proposes a partial shading adjuster for a PVE that can overcome the aforementioned limitations. The adjuster is applicable to the conventional PVE since it is based on an algorithm that can be added to the controller of the PVE. By adding the adjuster, the conventional PVE can emulate partial shading. The partial shading adjuster is added into a PVE that uses the direct referencing control strategy with the buck controller regulated by the proportional-integral controller. The results show that the PVE maintains its accuracy and produces a stable output voltage and current during the load changes when the adjuster is added. In conclusion, the proposed partial shading adjuster able to improve th
Proton Exchange Membrane Fuel Cell Emulator Using PI Controlled Buck Converter Himadry Shekhar Das; Chee Wei Tan; AHM Yatim; Nik Din bin Muhamad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v8.i1.pp462-469

Abstract

Alternative energy technologies are being popular for power generation applications nowadays. Among others, Fuel cell (FC) technology is quite popular. However, the FC unit is costly and vulnerable to any disturbances in input parameters. Thus, to perform research and experimentation, Fuel cell emulators (FCE) can be useful. FCEs can replicate actual FC behavior in different operating conditions. Thus, by using it the application area can be determined. In this study, a FCE system is modelled using MATLAB/Simulink®. The FCE system consists of a buck DC-DC converter and a proportional integral (PI) based controller incorporating an electrochemical model of proton exchange membrane fuel cell (PEMFC). The PEMFC model is used to generate reference voltage of the controller which takes the load current as a requirement. The characteristics are compared with Ballard Mark V 5kW PEMFC stack specifications obtained from the datasheet. The results show that the FCE system is a suitable replacement of real PEMFC stack and can be used for research and development purpose.
Optimal planning of hybrid photovoltaic/battery/diesel generator in ship power system Abba Lawan Bukar; Chee Wei Tan; Kwan Yiew Lau; Ahmed Tijjani Dahiru
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (616.562 KB) | DOI: 10.11591/ijpeds.v11.i3.pp1527-1535

Abstract

In line with the increasing concern on the pollution release by marine ships, renewable energy technologies in ships power system has received so much attention. Recently, photovoltaic (PV) and energy storage system (ESS) are been integrated into conventional diesel generator in ships power system Nevertheless, improper sizing of the overall ship power station will result in a high investment cost and increase CO2 emission. This paper devised a methodology to compute the optimal size of the ESS, PV and diesel generator in a ship power system to minimize CO2 emission, fuel cost, and investment cost. It is a well-known fact that power generation in a sailing ship depend on the time zone, local time, date, latitude, and longitude along ship navigation route and the condition of the ship power system also differs from power systems on land. The devised method in this paper takes into accounts the geographical and season variation of solar insolation along the route from Lagos (Nigeria) to Conakry (Guinea) and accurately model the power output of PV modules is along the route.
Comparison of electronic load using linear regulator and boost converter Razman Ayop; Shahrin Md Ayob; Chee Wei Tan; Tole Sutikno; Mohd Junaidi Abdul Aziz
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1720-1728

Abstract

Direct current (DC) electronic load is a useful equipment for testing the electrical system. It can emulate various load at a high rating. The electronic load requires a power converter to operate and a linear regulator is a common option. Nonetheless, it is hard to control due to the temperature variation. This paper proposed a DC electronic load using the boost converter. The proposed electronic load operates in the continuous current mode and control using the integral controller. The electronic load using the boost converter is compared with the electronic load using the linear regulator. The results show that the boost converter able to operate as an electronic load with an error lower than 0.5% and response time lower than 13 ms.
Photovoltaic emulator using error adjustment fuzzy logic proportional-integral controller Razman Ayop; Chee Wei Tan; Shahrin Md Ayob; Nik Din Muhamad; Jasrul Jamani Jamian; Zulkarnain Ahmad Noorden
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i2.pp1111-1118

Abstract

The photovoltaic (PV) technology has been increasingly used in our energy generation. Therefore, it is essential to have a good PV testing facility during the development process. The PV emulator (PVE) is a voltage or current source that mimic the current-voltage characteristic as a PV module that requires proper control strategy to work. The resistance feedback method (RFM) control strategy has many good attributes, except the transient response, which is caused by the proportional-integral (PI) controller. This paper proposed a new fuzzy logic PI (FLPI) controller to improve the transient performance of the RFM PVE. It is based on the error adjustment method that founded on the transient state and load of the PVE. The performance of the proposed PVE is compared with the original PVE that used RFM with the PI controller. The finding of the research shows that the transient performance of the proposed PVE has improved 2.3 times compared to the original PVE without affecting its accuracy.
DC traction power substation using eighteen-pulse rectifier transformer system Chuen Ling Toh; Chee Wei Tan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i4.pp2284-2294

Abstract

Twelve-pulse rectification system had been widely integrated in today’s DC traction power sub-station (DC-TPSS). This configuration had successfully mitigated low order harmonic distortion. As some research findings had confirmed that the dc voltage and current ripple factors may further minimize by increasing the number of rectification pulses to 18, 24, or 36. This paper had presented a simulation study to investigate the prospect of implementing an eighteen-pulse rectification system in a DC-TPSS. The theory of phase-shifting transformer used to produce an 18-pulse rectifier is presented with simulation verification. Simulation result shows that 3.69% of grid current distortion index is recorded without installing any filters. In addition, the dc voltage and current ripple may also be further reduced for about 30% compared to a conventional twelve-pulse rectification system.
Computation of current-resistance photovoltaic model using reverse triangular number for photovoltaic emulator application Razman Ayop; Chee Wei Tan; Kwan Yiew Lau
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 7, No 2: June 2019
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (469.158 KB) | DOI: 10.52549/ijeei.v7i2.1148

Abstract

PV emulator (PVE) is a power supply that produces similar current‑voltage (I‑V) characteristic as the PV module. It simplifies the testing of the PV system during the development phase. Since the output voltage and current of the PVE change based on various factors (load, irradiance and temperature), the computation of the operating point for the PVE is crucial. The resistance feedback control strategy is a robust and fast approach to find the operating point for the PVE. Nonetheless, it uses an uncommon current‑resistance PV model, which cannot be computed using the conventional approach. This work introduces the reverse triangular number to compute the PV model and obtained the operating point of the PVE. The reverse triangular number is based on the variable step sizes that allow fast computation of the PV model. The operating point is then used by the PI controller and the buck converter to produce the output voltage and current similar to the PV module. The results show that the reverse triangular number is able to compute the PV model accurately. In addition, the proposed PVE not only works well with resistive load but adapts accurately under the integration with maximum power point tracking converter.
The design of energy storage based on thermoelectric generator and bidirectional converter Razman Ayop; Chee Wei Tan; Abba Lawan Bukar; Awang Jusoh; Nik Din Muhamad; Syed Norazizul Syed Nasir
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i3.pp1605-1613

Abstract

Energy storage plays an important role in the future of the power system. There are a lot of energy storage system (ESS) available and thermal energy storage shows a promising future. Conventionally, this system is based on a steam generator that converts heat energy to electrical energy and an electrical heater to convert electrical energy to heat energy. Nonetheless, there is still no proper ESS based on the thermoelectric generator (TEG), which can convert directly heat energy to electrical energy and vice versa. This paper proposed a power converter with a new controller for the thermal ESS based on the TEG. The bidirectional converter and the modified perturb and observe method are used to manage the energy transfer at the TEG. The thermal energy storage is based on the sensible approach, where the heat energy causes the temperature to increase. The results show that the thermal ESS based on the TEG is feasible since the energy can be stored and released from the proposed system.
LCL-filter design and analysis for PWM recuperating system used in DC traction power substation Najwatul Alisa Sabran; Chuen Ling Toh; Chee Wei Tan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 4: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i4.pp2244-2254

Abstract

Voltage source inverter (VSI) had been used in dc traction power substation to deliver the trains braking energy back to the utility grid. To mitigate low order harmonics components, pulse-width-modulation (PWM) technique is commonly used in VSI controlled. As a result, the ac voltage and current waveforms may contain high frequency ripples. This paper proposes to mitigate the high frequency harmonics using LCL-filter with series R-damper. This filter offers good attenuation on harmonics with smaller size compare to other passive filter topologies. Theoretical analysis and simulation verification are conducted in designing the proposed filter. System level simulation had also been carried out. Sinusoidal grid current and voltage waveforms are recorded (THD<2%). This paper also includes damping losses analysis in conjunction with resonance peak suppression in designing the R-damper.