Claim Missing Document
Check
Articles

Found 2 Documents
Search

Self-tuning Fuzzy Logic Controller Based on Takagi-Sugeno Applied to Induction Motor Drives Nabil Farah; M. H. N. Talib; Z. Ibrahim; J. M. Lazi; Maaspaliza Azri
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1044.576 KB) | DOI: 10.11591/ijpeds.v9.i4.pp1967-1975

Abstract

Fuzzy logic controller has been the main focus for many researchers and industries in motor drives. The popularity of Fuzzy Logic Controller (FLC) is due to its reliability and ability to handle parameters changes during load or disturbance. Fuzzy logic design can be visualized in two categories, mamdani design or Takagi-Sugeno (TS). Mamdani type can facilitate the design process, however it require high computational burden especially with big number of rules and experimental testing. This paper, develop Self-Tuning (ST) mechanism based on Takagi-Sugeno (TS) fuzzy type. The mechanism tunes the input scaling factor of speed fuzzy control of Induction Motor (IM) drives Based on the speed error and changes of error. A comparison study is done between the standard TS and the ST-TS based on simulations approaches considering different speed operations. Speed response characteristics such as rise time, overshoot, and settling time are compared for ST-TS and TS. It was shown that ST-TS has optimum results compared to the standard TS. The significance of the proposed method is that, optimum computational burden reduction is achieved.
Analysis and investigation of different advanced control strategies for high-performance induction motor drives Nabil Farah; M. H. N. Talib; Z. Ibrahim; Qazwan Abdullah; Ömer Aydoğdu; Zulhani Rasin; Auzani Jidin; Jurifa Mat Lazi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.15342

Abstract

Induction motor (IM) drives have received a strong interest from researchers and industry particularly for high-performance AC drives through vector control method. With the advancement in power electronics and digital signal processing(DSP), high capability processors allow the implementation of advanced control techniques for motor drives such as model predictive control (MPC). In this paper, design, analysis and investigation of two different MPC techniques applied to IM drives; themodel predictive torque control (MPTC) and model predictive current control (MPCC) are presented. The two techniques are designed in Matlab/Simulink environment and compared interm of operation in different operating conditions. Moreover, a comparisonof these techniques with field-oriented control (FOC) and direct torque control (DTC) is conducted based on simulation studies with PI speed controller for all control techniques. Based on the analysis, the MPC techniques demonstrates a better result compared with the FOC and DTC in terms of speed, torque and current responses in transient and steady-state conditions.