Ömer Aydoğdu
Konya Technical University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analysis and investigation of different advanced control strategies for high-performance induction motor drives Nabil Farah; M. H. N. Talib; Z. Ibrahim; Qazwan Abdullah; Ömer Aydoğdu; Zulhani Rasin; Auzani Jidin; Jurifa Mat Lazi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.15342

Abstract

Induction motor (IM) drives have received a strong interest from researchers and industry particularly for high-performance AC drives through vector control method. With the advancement in power electronics and digital signal processing(DSP), high capability processors allow the implementation of advanced control techniques for motor drives such as model predictive control (MPC). In this paper, design, analysis and investigation of two different MPC techniques applied to IM drives; themodel predictive torque control (MPTC) and model predictive current control (MPCC) are presented. The two techniques are designed in Matlab/Simulink environment and compared interm of operation in different operating conditions. Moreover, a comparisonof these techniques with field-oriented control (FOC) and direct torque control (DTC) is conducted based on simulation studies with PI speed controller for all control techniques. Based on the analysis, the MPC techniques demonstrates a better result compared with the FOC and DTC in terms of speed, torque and current responses in transient and steady-state conditions.
Fuzzy membership functions tuning for speed controller of induction motor drive: performance improvement Nabil Farah; Md Hairul Nizam Talib; Zulkifilie Bin Ibrahim; Qazwan Abdullah; Ömer Aydoğdu; Jurifa Mat Lazi; Zm Isa
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i3.pp1258-1270

Abstract

Fuzzy logic controller (FLC) has gained high interest in the field of speed control of machine drives in both academic and industrial communities. This is due to the features of FLC of handling non-linearity and variations. FLC system consists of three main elements: scaling factors (SFs), membership functions (MFs), and rule-base. Fuzzy MFs can be designed with different types and sizes. For induction motor (IM) speed control, (3x3), (5x5) and (7x7) MFs are the most used MFs sizes, and normally designed based on symmetrical distribution. However, changing the width and peak position of MFs design enhance the performance. In this paper, tuning of MFs of FLC speed control of IM drives is considered. Considering (3x3), (5x5) and (7x7) MFs sizes, the widths and peak positions of these MFs are asymmetrically distributed to improve the performance of IM drive. Based on these MFs sizes, the widths and peak positions are moved toward the origin (zero), negative and positive side that produces a controller less sensitive to the small error variations. Based on simulation and performance evaluations, improvement of 5% in settling time (Ts), 0.5% in rise time and 20% of steady-state improvement achieved with the tuned MFs compared to original MFs.