Claim Missing Document
Check
Articles

Found 40 Documents
Search

Stator flux in direct torque control using a speed and torque variation-based sector rotation approach Siti Azura Ahmad Tarusan; Auzani Jidin; Mohd Luqman Mohd Jamil; Kasrul Abdul Karim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1326-1334

Abstract

A typical problem of traditional DTCs is that the stator flux fails to regulate at low running speeds. The regulation of stator flux in DTC is disrupted because of the unavoidable voltage drop across the stator resistance. As a result, one of the solutions to the problem is to use a fixed sector rotation technique. The concept is based on decreasing stator flux droop, a simple technique for changing the flux locus sector at a certain angle. This method, however, is only effective at low working speeds at one value of torque. As a result, the stator flux droop effect at various speeds as well as torque must be studied. The study is carried out in this paper using simulation (MATLAB/Simulink) and a practical setup (dSPACE board) where both have performed similar outcomes. The comparison is done between the conventional method (without a strategy) and the proposed method (with strategy). In summary, the effect of stator flux droop has been found to have an inverse linear relationship to the speed and torque variation.
A Review of Hybrid Battery Management System (H-BMS) for EV Nur Huda Mohd Amin; Mohd Ruddin Ab Ghani; Auzani Jidin; Zanariah Jano; Tole Sutikno
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 3: June 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i3.8743

Abstract

Significant to a major pollution contributor in passenger vehicles, electric vehicles are more acceptable to use on the road. Electric Vehicles (EVs) burn energy based on the usage of the battery. The usage of the battery in EVs is monitored and controlled by Battery Management System (BMS). A few factors monitor and control Battery Management System (BMS). This paper reviewed the battery charging technology and Remote Terminal Unit (RTU) development as a Hybrid Battery Management System (H-BMS) for Electric Vehicle (EV).
Comparison between selective harmonic elimination and nearest level control for transistor clamped H-bridge inverter Wail Ali Ali Saleh; Nurul Ain Mohd Said; Wahidah Abd Halim; Auzani Jidin
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 1: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i1.pp46-55

Abstract

Total harmonic distortion (THD) is a key index used to measure the quality of output waveforms in multilevel inverters. In this paper the THD is investigated and compared between two modulation methods; selective harmonic elimination and nearest level control, for 13-level transistor clamped H-bridge (TCHB) inverter. The selected TCHB topology employs a reduced number of DC sources and switches compared with other conventional multilevel inverters, which helps to reduce the size and cost of the inverter. The performance of both modulation methods has been validated through simulations using MATLAB/Simulink. The results show that for selective harmonic elimination, the 13-level output exists for a narrow range of modulation index, M (0.687≤M≤0.694),while for nearest level control method, the 13-level output exists for a wider range of M (M≥0.917), which means the 13-level output exists for different ranges of  for both methods. The THD obtained from both methods fulfills the IEEE Std 519-2014 standard of harmonics. Nearest level control method is conceptually simple and produces better THD results compared with selective harmonic elimination method.distortion (THD) is a key index used to measure the quality of output waveforms in multilevel inverters. In this paper the THD is investigated and compared between two modulation methods; selective harmonic elimination and nearest level control, for 13-level transistor clamped H-bridge (TCHB) inverter. The selected TCHB topology employs a reduced number of DC sources and switches compared with other conventional multilevel inverters, which helps to reduce the size and cost of the inverter. The performance of both modulation methods has been validated through simulations using MATLAB/Simulink. The results show that for selective harmonic elimination, the 13-level output exists for a narrow range of modulation index,  (), while for nearest level control method, the 13-level output exists for a wider range of  (), which means the 13-level output exists for different ranges of  for both methods. The THD obtained from both methods fulfills the IEEE Std 519-2014 standard of harmonics. Nearest level control method is conceptually simple and produces better THD results compared with selective harmonic elimination method
Implementation of Space Vector Modulator for Cascaded H-Bridge Multilevel Inverters Syamim Sanusi; Auzani Jidin; Tole Sutikno; Kasrul Abdul Karim; Mohd Luqman Jamil; Siti Azura Ahmad Tarusan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 6, No 4: December 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v6.i4.pp906-918

Abstract

The Space Vector Modulation (SVM) technique has gained wide acceptance for many AC drive applications, due to a higher DC bus voltage utilization (higher output voltage when compared with the SPWM), lower harmonic distortions and easy digital realization. In recent years, the SVM technique was extensively adopted in multilevel inverters since it offers greater numbers of switching vectors for obtaining further improvements of AC drive performances. However, the use of multilevel inverters associated with SVM increases the complexity of control algorithm (or computational burden), in obtaining proper switching sequences and vectors. The complexity of SVM computation causes a microcontroller or digital signal processor (DSP) to execute the computation at a larger sampling time. This consequently may produce errors in computation and hence degrades the control performances of AC motor drives. This paper presents a developement of SVM modulator for three-level Cascaded H-Bridge Multilevel Inverter (CHMI) using a hybrid controller approach, i.e. with combination between the DS1104 Controller Board and FPGA. In such way, the computational burden can be minimized as the SVM tasks are distributed into two parts, in which every part is executed by a single controller. This allows the generation of switching gates performed by FPGA at the minimum sampling time 〖DT〗_2=540 ns to obtain precise desired output voltages, as can be verified via simulation and experimental results.
High-Speed Computation using FPGA for Excellent Performance of Direct Torque Control of Induction Machines Tole Sutikno; Nik Rumzi Nik Idris; Auzani Jidin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 1: March 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i1.3110

Abstract

The major problems in hysteresis-based DTC are high torque ripple and variable switching frequency. In order to minimize the torque ripple, high sampling time and fast digital realization should be applied. The high sampling and fast digital realization time can be achieved by utilizing high-speed processor where the operation of the discrete hysteresis regulator is becoming similar to the operation of analog-based comparator. This can be achieved by utilizing field programmable gate array (FPGA) which can perform a sampling at a very high speed, compared to the fact that developing an ASIC chip is expensive and laborious.
A Concept of Virtual-Flux Direct Power Control of Three-Phase AC-DC Converter Nor Azizah Mohd Yusoff; Azziddin M. Razali; Kasrul Abdul Karim; Tole Sutikno; Auzani Jidin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (403.414 KB) | DOI: 10.11591/ijpeds.v8.i4.pp1776-1784

Abstract

This paper presents a proposed technique of virtual-flux direct power control (VF-DPC) as the improvement in control method from the basic of conventional direct power control (DPC) for front-end three-phase pulse width modulated (PWM) in ac-dc converter. Three sensors in order to measure the three phase input voltage have been eliminated in the proposed method of virtual flux (VF) regarding from the estimation technique. Theoritical principles of VF-DPC are discussed in this paper. The steady-state performance of VF-DPC and conventional DPC are evaluated and presented in this work to estinguish for the excellent performance. It is shown that the VF-DPC exhibits the several advantages, particularly in providing low total harmonic distortion with almost sinusoudal of input current and unity power factor (pf) operation under balanced three phase voltage supply. The simulation results from both methods through Matlab simulation have demonstrated the outstanding performance of the new proposed control technique from VF-DPC.
Simple Switching Strategy for High-Torque Control Performance utilizing Neutral Point Clamped Multilevel Inverter Nor Faezah Alias; Auzani Jidin; Atikah Razi; Tole Sutikno; Huzainirah Ismail
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 3, No 4: December 2013
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Three-level Neutral Point Clamped (NPC) inverter allows the configuration of switching devices to operate at high voltage and produce lower current/voltage harmonics. It is known that, DTC of induction machine which employs hysteresis controller has major drawbacks namely larger torque ripple and variable switching frequency. This paper aims to propose a suitable voltage vector selection to provide better torque regulation and lower switching frequency by employing DTC with 3-level NPC multilevel inverter. A simple switching strategy was formulated using 7-level torque hysteresis and 2-level flux hysteresis controllers to give more options in selecting an appropriate voltage vector, inherently, according the motor operation conditions. The improvements offered were verified through simulations.DOI: http://dx.doi.org/10.11591/ijpeds.v3i4.5248
Improved Torque Control Performance in Direct Torque Control using Optimal Switching Vectors Muhd Zharif Rifqi Zuber Ahmadi; Auzani Jidin; Maaspaliza Azri; Khairi Rahim; Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 3: 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v5.i3.pp441-452

Abstract

This paper presents the significant improvement of Direct Torque Control (DTC) of 3-phases induction machine using a Cascaded H-Bidge Multilevel Inverter (CHMI). The largest torque ripple and variable switching frequency are known as the major problem founded in DTC of induction motor. As a result, it can diminish the performance induction motor control. Therefore, the conventional 2-level inverter has been replaced with CHMI the in order to increase the performance of the motor either in dynamic or steady-state condition. By using the multilevel inverter, it can produce a more selection of the voltage vectors. Besides that, it can minimize the torque ripple output as well as increase the efficiency by reducing the switching frequency of the inverter. The simulation model of the proposed method has been developed and tested by using Matlab software. Its improvements were also verified via experimental results.
Enhanced Torque Control and Reduced Switching Frequency in Direct Torque Control Utilizing Optimal Switching Strategy for Dual-Inverter Supplied Drive M. Khairi Rahim; Auzani Jidin; Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (851.177 KB) | DOI: 10.11591/ijpeds.v7.i2.pp328-339

Abstract

Direct Torque Control (DTC) of induction machine has received wide acceptance in many adjustable speed drive applications due to its simplicity and high performance torque control. However, the DTC using a common two-level inverter poses two major problems such as higher switching frequency (or power loss) and larger torque ripple. These problems are due to inappropriate voltage vectors which are selected among a limited number of voltage vectors available in two-level inverter. The proposed research aims to formulate an optimal switching strategy using Dual-Inverter Supplied Drive for high performances of DTC. By using dual-inverter supplied, it provides greater number of voltage vectors which can offer more options to select the most appropriate voltage vectors. The most appropriate voltage vectors should able to produce minimum torque slope but sufficient to satisfy torque demands. The identification is accomplished by using an equation of rate of change of torque which is derived from the induction machine equations. The proposed strategy also introduces a block of modification of torque error status which is responsible to modify the status such that it can determine the most optimal voltage vectors from a look-up table, according to motor operating conditions. The improvements obtained are as follows; 1) minimization of switching frequency (reduce power loss), and 2) reduction of torque ripple. Some improvements obtained in the proposed strategy were verified via experimentations.
A Novel Optimal PI Parameter Tuning Strategy to Improve Constant Switching Performance of Direct Torque Control Sundram Ramahlingam; Auzani Jidin; Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v7.i2.pp422-430

Abstract

This paper presents a novel method of optimal Propotional-Intergral (PI) controller’s parameter tuning strategy in-order to improve the Constant Switching Performance of 3-phase DTC shceme. The Direct Torque Control (DTC) sheme is acknowledged to provide fast decoupled control over the torque output and stator flux via a simple control structure. However, DTC sheme has two major downsides, which are the inconsistent inverter switching frequency and high torque output ripple. The main reason that contributes to these tribulations is the usage of hysteresis comparators in order to control the output torque. The realization of PI based controller method as replacement of hyterisis controller in DTC system able to provide significant solutions to over come the fall back while retaining the simple control structure of conventional DTC. The combination usage of higher sampling controller DS1004 and also 3-level CHMI in this system can further minimize the output torque ripple by providing higher resolution with lower digital error and greater number of vectors. This paper presents detail explanation and calculation of optimal PI parameter tuning strategy consecutively to enhance the performance of 3-level DTC system. In order to verify the feasibility of the proposed method experimentation, the proposed method is compared with convention DTC system via simulation and experiment results.